10. AQUATIC RESOURCES AND THEIR HABITATS

10.1 INTRODUCTION

This habitat section describes the aquatic environment within the upper Nehalem watershed and ODF contiguous parcels and how that environment affects the distribution and abundance of aquatic resources in the watershed. Although other species exist within the watershed, the focus of this Chapter will be on seven anadromous fish species and two amphibian species. By exploring the following key questions we can begin to understand the connection between forest management practice and aquatic species and habitats in the target watersheds.

Key Questions:

- 1. What fish species are documented in the watershed? Are any of these currently state or federally listed as endangered, threatened or candidate species? Are there any fish species that historically occurred in the watershed that no longer occur there?
- 2. What is the distribution, relative abundance and population status of salmonid species in the watershed? What is the distribution of fish species, by life stage, in the watershed?
- 3. Which salmonid species are native to the watershed, and which have been introduced into the watershed?
- 4. Are there potential interactions between native and introduced species?
- 5. What is the condition of the fish habitat in the watershed (by subbasin) according to existing habitat data?
- 6. Where are the potential barriers to fish passage? How many miles of fish-bearing streams are blocked by culverts?
- 7. What stream reaches have high, moderate, and low level of key pieces of large wood (> 24 inch conifer) in the channel?
- 8. Did any splash damming occur in the watershed? Where did this splash damming occur? *Are the effects still apparent?*
- 9. Are the tailed frog and Columbia torrent salamander potential present in the watershed? What are the habitat needs of these species?

10.2 METHODS

The information obtained in this chapter was compiled from a review of the existing literature and data including existing watershed assessments and ODFW Aquatic Inventory Reports and ODFW and ODF data. Our task was to review and summarize the available information relative to the questions stated above and with respect to ODF management basins. Existing data for fish habitat was available only at the 5th field HUC level and not the level of ODF management basins. Figure 10-1 shows the relationship between the three relevant 5th field HUC and ODF management basins.

10.3 RESULTS

10.3.1 Fish Species in the Upper Nehalem River Basin

Table 10-1 lists some fish species documented in the upper Nehalem River and their current management status. All of these species are native to the Oregon coastal rivers. Warm water fish species have been introduced to Fishhawk Lake, near the Fishhawk Management Basin, and it is likely that rainbow trout from stocks outside the Nehalem River watershed have been planted in the basin. No information was available on the interactions between native and introduced fish. No information was available to document the extirpation of any native fish species from the Nehalem River basin.

Species	Life Histories Strategy	Management Status
Coho salmon	Anadromous	Proposed as threatened under federal ESA, as
Oncorhynchus kisutch		part of Oregon Coast ESU.
		State sensitive with critical status
Chinook salmon	Anadromous	Not currently listed
O. tshawytscha		
Steelhead	Anadromous	Candidate for listing under federal ESA.
O. mykiss		State sensitive with vulnerable status
Coastal cutthroat trout	Anadromous and	Federal species of Concern
O. clarki clarki	Resident	State sensitive with vulnerable status
Pacific lamprey	Anadromous	Federal species of Concern
Lampetra tridentata		State sensitive with vulnerable status
Western Brook lamprey	Resident	Not currently listed
L. richardsoni		

Table 10-1. The management status of fish species documented in the upper Nehalem River.

Oregon Department of Forestry

Upper Nehalem Watershed Analysis

Figure 10-1. Project Area 5th and 6th Field HUCs.

10.3.1.1 Fish Distribution, Abundance, Status in the Upper Nehalem

Coho Salmon, Oncorhynchus kisutch

Distribution. Coho salmon are endemic to coastal rivers and streams of Oregon at the time of this assessment. They were widely distributed throughout the mainstem and larger tributaries of upper Nehalem River (Figure 10-2).

Coho salmon distribution

Figure 10-2. Coho salmon distribution in the Nehalem River basin.

Status. The coho salmon within the upper Nehalem are part of the Oregon Coast Evolutionary Significant Unit (ESU). The Oregon Coast ESU of coho salmon is a declining population and is currently proposed for listing under the federal Endangered Species Act. Estimates of abundance suggest that this ESU is currently at a level of 5 to 10 percent of historical abundance (Weitkamp et al. 1995).

Several factors have been identified as likely contributing to the population decline of coho salmon. These factors of decline include habitat destruction, overfishing, artificial propagation, and poor ocean conditions (Weitkamp et al. 1995). As in-channel habitat complexity, structure, and abundance of pool habitats are important for freshwater survival of coho salmon, reduction of these habitat characteristics may limit coho production (Nickelson et al. 1992).

Abundance. ODFW conducted coho salmon spawning surveys in the Nehalem River from 1998 to 2003. In general, densities of spawners increased from 1 to 5 wild adult coho per mile in 1998 to more than 200 per mile in 2002 and 2003 (Kavanagh et al. 2005).

Chinook Salmon, O. tshawytscha

Distribution. Within the Project Area, fall Chinook salmon were distributed in upper mainstem Nehalem River and the lower reaches of six tributaries (Figures 10-3 and 10-4) (Kavanagh et al. 2005).

Status. Chinook salmon in the Nehalem River basin are part of the Oregon Coast ESU. Chinook salmon in this ESU do not currently hold any special status at the state or federal level. Forty-five populations have been identified within this ESU (Kostow 1995). In the Oregon Coast ESU, habitat loss and degradation have been associated with human activities such as dam construction, water withdrawal, logging, and agriculture. Logging and agricultural practices were identified as resulting in modifications to stream structure and reduction of riparian habitat (Myers et al. 1998).

Abundance. A 5-year mean spawning escapement for the Oregon Coast ESU was estimated at 136,000 Chinook salmon and the long term trend has been determined to be stable or increasing (Myers et al. 1998). ODFW survey data show counts of spawning fall Chinook salmon to be 140 fish total in the Nehalem River (Kavanagh et al. 2005).

Figure 10-3. Fall Chinook salmon distribution in the Nehalem River basin.

Figure 10-4. Early run fall Chinook salmon distribution in the Nehalem River basin.

Steelhead, Oncorhynchus mykiss irideus

Distribution. Winter steelhead were found throughout the mainstem Nehalem and larger tributaries (Figure 10-5) (Kavanagh et al. 2005). These authors also reported that steelhead have access to all historic habitat in the upper Nehalem basin.

Figure 10-5. Steelhead distribution in the Nehalem River basin.

Status. The Oregon Coast ESU of steelhead is a candidate for federal listing under the ESA. Past run size and escapement estimates have been based on expansions of angler catch using assumed harvest rates. Total 5-year mean escapement for major streams in the Oregon ESU was 96,000 steelhead (82,000 winter, 14,000 summer). These totals did not include all streams in the ESU, and thus were thought to be an underestimate. Due to concerns with the method of escapement estimation, NOAA Fisheries conducted a trend analysis for 42 independent stocks within the Oregon Coast ESU (Busby et al. 1996). Thirty-six stocks were found to have a declining trend and 6 exhibited increases evident during the available data series.

Kostow (1995) reported the habitat degradation has impacted steelhead populations in the mid-Oregon coastal streams. She notes specifically siltation, loss of structural complexity, and loss of riparian habitat from road building and logging. Additional threats include channelization, water withdrawals, and development. Busby et al. (1996) reported similar threats to coastal salmonid populations and added concerns regarding streamflow and temperature in areas where there are significant water withdrawals or removal of streamside vegetation had occurred.

Abundance. ODFW recently (2003 and 2004) conducted steelhead surveys in the mainstem Nehalem and Rock Creek. Data varied over time and survey location, but average redd densities that ranged from 2.2 to 20.7 redds per mile (Kavanagh et al. 2005).

Coastal Cutthroat Trout, Oncorhynchus clarki

Distribution. Cutthroat trout were widely distributed throughout the upper Nehalem River basin (Figure 10-6) (Kavanagh et al. 2005).

Figure 10-6. Cutthroat trout distribution in the Nehalem River basin.

Status. Coastal cutthroat trout in the Nehalem River Basin are part of the Oregon Coast ESU. Data on adult abundance in this ESU were available for only a few streams and would not be indicative of the status of the ESU as a whole. Thus, NOAA Fisheries used other available information to evaluate population trends for this ESU in 1999 (Johnson 1999). An analysis of recreational harvest data indicated that the numbers of larger fish have been declining; however

trends in juvenile abundance have been stable or positive in most locations (Johnson et al. 1999). Additional information compiled by ODFW indicates that declining trends were evident for wild populations of anadromous cutthroat trout based on recreational fisheries data (Johnson et al. 1999). Resident populations however, were reported to be relatively stable (Johnson et al. 1999).

Habitat degradation appears to be the prime concern regarding the future status of coastal cutthroat trout populations. Habitat degradation and increases in stream temperatures have been noted in many small tributaries in the Oregon coastal region (Kostow 1995). More specifically, Johnson et al. (1999) reported that logging practices have been shown to decrease instream habitat quality due to increases in water temperature and siltation, removal of large wood, changes in river basin hydrology, and placement of culverts. The increased culvert numbers in coastal cutthroat trout streams was noted as a serious threat because of their effectiveness in compromising fish migrations (Johnson et al. 1999). The reduction in habitat connections among streams has been described as a potentially significant threat to coastal cutthroat trout populations (Johnson et al. 1999).

Abundance. No data was available on the abundance of cutthroat trout in the upper Nehalem River.

Pacific Lamprey, Lampetra tridentata

Distribution. Pacific lamprey were distributed throughout coastal rivers and stream in Oregon and throughout the Columbia River basin (Kostow 2002). Pacific lamprey were present in the Nehalem River basin (Kavanagh et al. 2005) although their exact distribution was not known.

Status. Pacific lamprey were petitioned for listing under the federal ESA but the listing was determined not warranted. However, available count data from two Columbia River dams and two dams on the Oregon Coast all indicated that this species may have declined from levels detected in 1970 (Kostow 2002). Freshwater habitat degradation was likely the most significant threat to Pacific lamprey populations. Potential habitat issues were reviewed in Kostow (2002). Habitat issues that potential impact lamprey ammocoetes include siltation, water pollution, hydrologic modifications, and development in or above rearing areas. Migrating adult lamprey have difficulty negotiating fish ladders, thus dams and perched culverts could eliminate access to spawning habitats.

Abundance. Lamprey redds were counted on 2003 and 2004 ODFW steelhead surveys in the Nehalem River. Counts averaged from 14 to 30 redds per mile (Kavanagh et al. 2005).

Western Brook Lamprey, Lampetra richardsoni

Distribution. Western brook lamprey was distributed throughout coastal rivers and streams in Oregon and are present in the Nehalem River basin (Kostow 2002) although their exact distribution was not known.

Status. Western Brook lamprey were petitioned for listing under the federal ESA but the listing was determined not warranted. Freshwater habitat degradation is likely the most significant threat to lamprey populations. Potential habitat issues were reviewed in Kostow (2002). Habitat issues that potential impact lamprey ammocoetes include, siltation, water pollution, hydrologic modifications, and development in or above rearing areas.

Abundance. No data were available on the abundance of Western Brook lamprey in the upper Nehalem River.

10.3.2 Fish Habitat in the Upper Nehalem River

Data on the habitat condition in the upper Nehalem River was obtained from Kavanagh et al. (2005). In the Nehalem River basin, ODFW Aquatic Inventory Habitat surveys were conducted from 1992 to 2004. Within the Project Area, surveys were restricted to tributary habitats and covered approximately 288 km of stream habitat (Kavanagh et al. 2005). During these surveys data were collected to describe the stream channel morphology, riparian characteristics and instream habitat features during low flow conditions. Details on the specific methods used can be found in Moore et al. (1999). Summary data on the habitat conditions for upper Nehalem streams was taken from Kavanagh et al. (2005) and can be found in Table 10-2. Overall these streams were reported to have habitat in fair to good condition (Kavanagh et al. 2005).

Kavanagh et al. (2005) analyzed the survey data collected and reported on the health of the upper Nehalem streams by comparing survey data to reference stream conditions. Reference stream conditions were obtained from 124 sites that were located in Oregon Coastal streams and were deemed to have experienced only low impact from human activities, such as sites within roadless areas, wilderness sites, or sites within late-successional or mature forests (Kavanagh et al. 2005). Fifteen habitat attributes were averaged for the three 5th field HUCs that overlap with the Project Area and compared with reference values for those same variables. The following results are summarized from Figures 1 through 6 of Kavanagh et al. (2005).

The results of the comparison showed the upper Nehalem streams had fewer high gradient reaches and more reaches with a narrower active channel width than Reference streams. The Upper Nehalem streams showed similar habitat ratings for 6 attributes including: percent gravel in riffles, percent bedrock, density of deep pools, percent pool habitat, percent secondary channel

Table 10-2. Upper Nehalem River Habitat Summaries by 5th Field HUC. Data obtained from Kavanagh et al. (2005).

ODF NEHALEM PROJECT AREA: HUC 1710020203 REACH SUMMARY

			% AREA									FINES IN	GRAVEL IN	LARGE
STREAM	SURVEY DATE	REACH	IN SIDE	GRADIENT	W	*VALLEY	CHANNEL	"LAN	ID USE	SHADE	BEDROCK	RIFFLES	RIFFLES	BOULDERS
		LENGIN (m)	GHANNELS			FURM	FORM	DOM	SOB-DOM	76	7/3	70	The	#/100m
ENEKE CR	7/7/1000	1065	5.9	47	33	CT	CA	YT		80	11	40	14	03
SENEKE OREEK	7/10/2001	6774	6.0	03	38.2	CT	CT	in	60	73	2.2	0	30	3.3
SENEVE ODEEN	7/20/2001	2056	8.5	22	24.1	CT	CA	CT	AC	70		7	40	10.8
	P(1/2001	2000	6.5	2	7	MT	CA.	er	VT	0.4	0	10	07	190
SENERE ODEER	DITIZOUT	2000	12	2 2 2	0.7	NAT.	CA	OT		04	9	10	21	49.0
SENERE GREEK	0///2001	1901	4.2	0.0	31	001	UA OT	51	LI	91	23	13	41	50.8
SENERE UREER	Granzuu I	1220	127	5	2.0	643	61	51	TT I	90	6	19	24	83.8
SENEKE GREEK	8/14/2001	1300	87	101	(2	NA 8	CA	PT	51	92	2	45	51	51.8
SENEKE GREEK	8/15/2001	633	10 7	18 4	1.2	SV	CH	P1	LI	85	0	95	5	193
BENEKE CREEK	8/24/1993	3049	4.4	0.4	20	CT	CT	AG		86	20	8	42	6.0
SENEKE CREEK	8/26/1993	6584	7.2	0.5	16.8	IN I	CA	AG		87	8	9	55	48
BENEKE CREEK	9/10/1993	3349	13:6	0.7	7.5	MT	CT	TH		82	6	12	44	21.1
BUILL HEIFER CREEK	6/22/1996	535	8.7	2.7	6.5	MT	CA	ST		90	5	32	22	6.4
BULL HEIFER CREEK	8/20/2001	1007	11.1	2.8	6	MT	CA	ST	LT	91	6	25	25	104.9
BULL HEIFER CREEK	8/22/2001	1564	3.3	73	2.8	MT	CA	LT	ST	94	2	58	21	74.7
BULL HEIFER CREEK TRIB A	8/27/2001	2227	8 1	4.7	55	MT	CT	ST	LT	95	7	34	24	150.4
BUSTER CR	8/16/1999	967	5.5	0.9	108	CT	CT	YT		84	2	37	33	0.0
BUSTER CR TRIB	8/20/2001	848	0.0	0.8	12.9	MT	US	ST		64	0	87	13	0.0
AUSTER CREEK	8/7/1997	1192	9 1	13	1.9	MV	CH	ST		93	4	8	60	8.2
USTER CREEK	8/11/1997	1668	4.6	14	1	MV	CH	ST		92	15	5	30	27.6
SUSTER CREEK	8/11/1997	524	15.9	1.5	6.2	CT	CA	ST		93	10	5	48	86
BUSTER CREEK	8/12/1997	772	45.0	22	E,	MT	UA	YT	87	01	1		53	18.1
BUSTED CREEK	8/14/1007	1473	8.8	12	2.4	CT	CA	ST	VT	RG	2	10	67	70.0
	P/14/1007	024	2.4	0.7	9.6	CT	CT	CT	×T.	00	0	0		580
	D/14/1007	1003	2.4	0.3	0.0	NAT	110	CT	VT	01	0	9	92	02
	0/10/1007	1002	37	07	5.0	AAT	110	CT.	NT.	00			00	0.7
SUSTER CREEK	Q/19/1997	1000	0.7	0.7	2.4	CT	05	DI VT	TT DT	90		9	50	0.8
BUSTER CREEK	8/19/1997	1307	8.4	0.9	04	UT	UT UP	YI	51	92	5	10	78	01
BUSTER CREEK	8/21/1997	308	137	13	15	N/LI	US	51		84	5	1	78	00
BUSTER CREEK	8/21/1997	1944	31	1.6	11.2	CT	CI	SI		91	1	39	55	24
BUSTER CREEK TRIB (NG-2390)	8/12/2002	885	29	12	8.5	MI	US	ST		88-	0	94	6	00
BUSTER CREEK TRIB A	6/25/1998	562	1.8	06	6.2	MT	ÇA	ST		90	0			0.0
BUSTER CREEK TRIB C (NC-2356)	8/14/2002	496	3.1	7.5	2	MV	CH	A.L.		100	2	0	50	0.4
BUSTER CREEK TRIBUTARY A1	6/11/2002	1237	3.2	5.7	4.3	CT	CA	LT	ST	100	9	55	38	0.0
BUSTER CREEK TRIBUTARY A3	6/10/2002	545	0.3	2.5	3.2	MT	US	MT	ST	88	1	64	36	0.0
BUSTER CREEK TRIBUTARY A3	6/10/2002	652	4.8	8.5	2.1	SV	CH	MT	ST	99	12	65	25	0.0
COWCR	B/23/2000	583	5.9	6.1	2.9	CT	CT	ST		91	19	9	22	24
COW CREEK	8/1/1995	2999	11.4	1.4	62	CT	CT	RR		80	0	14	48	3.4
COW CREEK	8/7/1995	1949	8 1	27	3 1	CT	CA	TH	ST	85	5	13	47	80
COW CREEK	8/9/1995	3656	7.0	61	1.2	MV	CH	TH	ST	94	24	18	43	24.8
COW CREEK (NC-1149)	8/20/2003	1000	8.7	5 1	2.4	CA	CT	ST		85	21	13	34	810
CRAWFORD CR	8/23/2001	952	0.3	22	3.9	CT	CA	ST	MT	85	0	68	23	07
FISHHAWK CREEK (JEWEL)	10/4/1995	3464	24	1.5	4.9	WE	US	ST	LT	85	7	23	20	17
EISHHAWK OBEEK (JEWEL)	10/4/1995	843	19	55	1.8	MM	CH	LT.	ST	92	n	16	30	0.2
CICLIANAN CREEK TOID &	10/10/1005	823	0.8	2.5	3	CT	CA	LT.	CT	99	6	19	21	D.7
ISUMAWAY OBEEK TOID A	10/10/1005	1603	0.0	4	22	1.51	CH	VT	TH	76	2	21	36	0.7
CILMORE CO	8/34/3000	650	3.4	2 2	2.5	CT	CA	eT	111	0.1	-	15	18	0.0
SILMORE OR	0/24/2000	1010		0.0	4.0	OT	CA.	01		20	4	10	10	0.0
SILMORE GREEK	8/11/2001	1010	1.4	3.4	0.1	GT	CA	DI		00	2	48	30	2.2
GILMURE GREEK	9/17/2001	700	6.3	10	1.7	WV	CH	SI		91	0	53	40	33
GILMORE GREEK (NG-2154)	8/19/2003	1004	54	4.5	34	CT.	CA	ST		92	11	40	40	69
GILMORE CREEK TRIB A	9/18/2001	2001	0.0	2.5	5.5	MI	CT	ST		87	1	40	43	0.2
GILMORE CREEK TRIB A	9/19/2001	1022	3.5	9.4	1.8	MV	CH	ST		93	8	22	65	5.5
HAMILTON CREEK	9/14/1993	1095	8.0	1.3	6.6	MT	CT	TH	YT	86	10	20	30	28
HAMILTON CREEK	9/14/1993	2540	5.5	2.3	2.7	M1	CA	TH	YT	89	5	20	34	8.6
HAMILTON CREEK	9/16/1993	2019	7.5	3.4	2.1	MV	CH	TH		99	9	22	19	11.6

R2 Resource Consultants, Inc.

1485_UpperNehalemWatershedAnalysis_121405

1

Tuole to 2. (cont) opper rendent filler band to band of an inter analy of an (2005)	Table 10-2.	(cont) Upper Nehalem	River Habitat Summaries by	5th Field HUC.	Data obtained from 1	Kavanagh et al. (2005).
---	-------------	----------------------	----------------------------	----------------	----------------------	-------------------	--------

.

ODF NEHALEM PROJECT AI	REA: HUC	1710020203
REACH SUMMARY		

			% AREA									FINES IN	GRAVEL IN	LARGE
STREAM	SURVEY DATE	REACH	IN SIDE	GRADIENT	VWI	*VALLEY	*CHANNEL	"LAN	ID USE	SHADE	BEDROCK	RIFFLES	RIFFLES	BOULDER
		LENGTH (m)	CHANNELS			FORM	FORM	DOM	SUB-DOM	36	%	%	%	#/100m
HAMILTON CREEK TRIB A	9/23/1996	783	2.5	3.4	3.8	MT	US	LT		98	16	17	26	8.6
HAMILTON CREEK TRIB A	9/25/1996	1364	7.7	4.5	21	MV	CH	YI	LT	90	7	15	32	14 9
HAMILTON CREEK TRIB A	9/25/1996	326	5.4	9.4	1.5	MV	CH	LT		98	7	15	22	5.2
HAMILTON CREEK TRIB A1	9/23/1996	1070	4.8	6,9	2.5	MV	CH	LT		99	6	19	63	9.3
HAMILTON CREEK TRIB B	9/24/1996	405	15.0	8.9	1.2	MV	CH	ST	LT	96	2	10	30	51.9
HAMILTON CREEK TRIB B	9/24/1996	621	3.5	5.2	2.1	MV	CH	YT	ST	79	5	15	28	12.9
HAMILTON CREEK TRIB B	9/24/1996	963	2.6	8.6	1.6	MV	CH	YT	LT	99	6	15	30	9.6
KLINES CREEK	7/19/1995	2613	3.9	2	6.8	CT	CT	LG		79	0	20	65	1.5
KLINES CREEK	7/24/1995	3836	19 9	6.8	1.8	MV	CH	LT		90	1	16	61	11.0
KLINES CREEK	7/31/1995	1172	4.7	6.6	1.9	MV	CH	ST		88	0	D	D	0.0
MOORES CREEK	7/12/1995	1415	5.1	2.6	42	MT	UA	YT		82	0	29	46	0.3
MOORES CREEK	7/17/1995	2193	3.0	7	1.9	MV	CH	ST		89	0	23	49	3.1
NETTLE CREEK	6/20/2000	395	24.5	6.4	10.7	MT	US	ST		95	0	29	37	0.0
NETTLE CREEK	6/21/2000	297	26	10.7	57	MT	US	YT	ST	85	2	27	57	0.0
NETTLE CREEK	6/26/2000	734	1.0	12.0	1.8	MV	CH	YT		79	1	27	38	0.0
NETTLE CREEK	6/28/2000	1406	1.9	9.2	22	MV	CH	ST		95	0	22	53	1.5
NORTH FORK QUARTZ CREEK	7/22/1996	1159	13.5	5.5	1.6	MM	CH	ST		99	5	30	43	19.8
NORTH FORK WALKER CREEK	7/13/1994	2063	7.8	9	1.8	MV	CH	ST		100		7	31	7.6
OSWEG CREEK	7/13/1998	520	86	16.1	5	CT	CA	ST	MT	96	0	86	13	9.2
OSWEG CREEK	8/21/1995	1680	27.4	94	1.2	MV	CH	YT		94	0	22	63	16.5
OSWEG CREEK	8/22/1995	1028	. 13	8.9	1.1	MV	CH	ST		94	õ	30	65	1.8
QUARTZ CREEK SURVEYED AS NE	7/16/1996	2090	8.9	3.1	4.1	MT	CA	RR		82	2	21	33	3.8
QUARTZ CREEK SURVEYED AS NE	7/17/1996	995	9.9	54	18	MV	CH	ST		86	1	22	31	34.2
QUARTZ CREEK SURVEYED AS NE	7/18/1996	572	23	127	1	SV	CH	ST		84	19	38	37	55.8
SLAUGHTERS CREEK	7/27/1997	548	1.7	26	1	MV	CH	MT		97		36	55	11.1
SLAUGHTERS CREEK	7/28/1997	594	6.0	27	14	MV	CH	MT	YT	89		22	66	0.5
SOUTH FORK QUARTZ CREEK	7/23/1996	373	0.0	127	27	MV	CH	SR		94	9	7	33	193 B
SOUTH FORK QUARTZ CREEK	7/24/1998	870	24	3	36	MT	CA	ST		97	5	28	45	47.8
SOUTH FORK WALKER CREEK	7/18/1994	285	1.1	5.9	1	MV	CH	ST		98	13	9	42	15.1
STANLEY CREEK	9/4/1997	582	4.4	3.1	72	MT	US	ST		98	.7	5	58	27.7
STANLEY CREEK	9/8/1997	281	1.9	3.9	1.8	MV	CH	ST		95	14	10	62	26.0
STANLEY CREEK	9/8/1997	542	15.7	2.5	25	MT	US	ST		100	17	37	45	56.5
STANLEY CREEK	9/9/1997	1466	42	8.6	2	SV	CH	ST		95	14	6	51	116.2
STANLEY CREEK	9/11/1997	519	12.0	63	34	MT	US	YT	ST	90	1	15	53	92
TRAILOVER CREEK	9/24/2001	2026	24	29	92	CT	CT	ST	-	85	6	22	48	0.1
TRAILOVER CREEK	8/30/1994	1425	40	28	5.8	CT	CA	IT		92	1	30	34	0.1
TRAILOVER CREEK	5/13/1997	2870	1.8	7.8	1.3	MV	CH	YT	ST	90	÷	27	53	48
WALKER CREEK	6/20/1994	8013	29	0.6	14 6	CT	CA	YT		89	14	9	63	16
WALKER CREEK	6/23/1994	2182	11.9	1.1	13.4	MT	CA	YT		76	6	11	47	2.3
WALKER CREEK	6/30/1994	2269	77	16	26	MT	CA	IT	SI	91	25	6	42	88
WALKER CREEK	7/5/1994	270	0.0	14	2	MAL	CH	ST	0.	97	6	3	28	15.9
WALKER CREEK	7/5/1994	688	53	2	20	MT	CA	YT		86	23	5	31	115
WALKER CREEK	7/6/1994	2104	13.6	3	14	SV	CH	ST		97	20	12	35	59
WALKER CREEK	8/20/1997	1994	0.7	0.6	12 4	CT	CT	YT		77	0	55	43	0.1
WALKER CREEK	9/1/1997	3288	20	0.6	42	CT	CA	ST		95	3	16	81	16
WALKER CREEK (NC-2130)	8/7/2002	1009	0.5	07	6	CT	CA	ST		73	1	17	77	52
the test that the best the best the best the test of the	THE E F RE WARD			M	~									Bar . Bar

R2 Resource Consultants, Inc.

1485_UpperNehalemWatershedAnalysis_121405

10-12

Oregon Department of Forestry

Table 10-2. (cont) Upper Nehalem River Habitat Summaries by 5th Field HUC. Data obtained from Kavanagh et al. (2005).

ODF NEHALEM PROJECT AREA: HUC 1710020203 REACH SUMMARY

		ACTIVE	CHANNEL		PERCENT		RESIDUAL	WC	OD DEBRIS		CONIFER	RIPARIAN C	ONIFERS
	REACH	CHANNEL	WIDTHS/	PERCENT	SLACKWATER	POOLS	POOL	PIECES	VOLUME	KEY PIECES	TREES	#>20in dbh	#>35in dbh
STREAM	LENGTH (m)	WIDTH (m)	POOL	POOLS	POOLS	>1m DEEP/km	DEPTH (m)	#/100m	(m3)/100m	#/100m	TOTAL/1000%	/10001	/1000ft
al an	11500				122.515				1993				
BENEKE CR	1065	52	57.9	3.3	0.4	0.8	0.53	14	46	3.2	650	0	0
BENEKE CREEK	6774	14.8	4.2	74.0	2.4	8.2	0.9	10	14	03	75	27	7
BENEKE CREEK	2056	9.7	2.7	65 4	3.2	131	0.72	18	20	0.6	102	20	0
BENEKE CREEK	2536	10.5	3.6	44 1	7.7	5.4	0.62	29	29	0.9	329	49	12
BENEKE CREEK	1981	7.6	5.1	34.3	11 2	0.5	0.39	34	46	1	219	98	12
BENEKE CREEK	1225	6.3	5.1	16.9	1.7	0.6	0.29	20	54	1.9	549	46	0
BENEKE CREEK	1300	3	9.3	9.4	0.3	0	0.23	30	. 79	3.8	442	168	0
BENEKE CREEK	633	2.5	144.7	0.3	0.0	0	0.19	14	37	1.9	914	427	0
BENEKE CREEK	3049	19.9	4.9	39 B	0.4	3.7	0.7	14	12	0.5	0	0	0
BENEKE CREEK	6584	18.3	7	25.6	1.6	42	0.8	30	28	1	18	6	6
BENEKE CREEK	3349	14 2	2.9	40.8	10.9	2.6	0.6	49	50	1.2	163	42	8
BULL HEIFER CREEK	535	8.8	4	27.9	12.4	3	0.53	28	49	2.6	163	0	0
BULL HEIFER CREEK	1007	75	3.8	28.4	01	0.8	0.38	29	41	19	142	0	D
BULL HEIFER CREEK	1564	42	5.5	44.8	38.4	12	0.44	21	55	1.2	599	295	51
BULL HEIFER CREEK TRIB A	2227	6.3	4.5	30.0	14 6	1.5	0.44	26	49	1.1	183	52	0
BUSTER CR	967	13	2.4	74.1	04	6.7	0.58	28	37	23	61	20	20
BUSTER CR TRIB	848	47	82	94 8	91.5	1.2	0.62	11	11	02	1097	0	0
BUSTER CREEK	1192	15.7	3.1	49.6	0.0	61	0.6	18	41	1.8	549	61	0
BUSTER CREEK	1668	16.6	34	47.8	0.2	57	0.8	14	21	0.5	168	30	0
BUSTER CREEK	524	12.5	3.1	65.6	17	27	0.6	17	32	1	30	0	0
BUSTER CREEK	772	20.8	28	32.8	0.0	1.8	0.5	26	26	0.4	274	0	0
BUSTED CREEK	1473	12.7	3.8	82.0	1.4.2	6.8	0.6	21	26	0.6	224	20	0
BUSTED ODEEK	0.34	11.5	53	61 R	30.0	03	0.7	10	17	0.6	0	0	0
BUSTER CREEK	1402	11.3	20	90.5	1.0	70	07	10	10	0.0	100	16	
BUSTED CDEEK	1052	80	37	82.1	22	7.3	07	10	10	0.2	500	93	20
DUSTER CREEK	1003	0.0	3.6	105.12	12	2.7	0.0	16	22	0.2	396	20	20
BUSTER CREEK	1307	3.4	3.5	20.0	1.5	2.0	0.5	24	23	0.7	36.5	20	0
BUSTER CREEK	300	1.1	9.0	70.7	0.0	2.0	03	29	46	0.7	18,5	0	0
BUSTER CREEK	1944	31	5	70.8	20 1	0.5	0.3	18	.50	1.3	137	15	0
BUSTER CREEK TRIB (NG-2390)	665	34	09	22.0	14.0	24.4	0.28	23	40	10	204	0	0
BUSTER CREEK TRIB A	202	3.4	0.4	73.0	130	214	0.34	45	209	4.8	204	102	0
BUSTER CREEK TRIB C (NC-2356)	490	3.9	22.4	24	00	0	0.05	16	35	1.6	0	0	0
BUSTER CREEK TRIBUTARY AT	1237	21	10.3	40.6	9.3	0.7	0.36	26	44	1.1	500	85	0
BUSTER CREEK TRIBUTARY A3	545	3	6.5	64.7	1.3	0	047	29	97	1.3	945	244	0
BUSTER CREEK TRIBUTARY A3	652	2.7	10.9	48.7	3.1	0	0.38	16	40	06	1006	213	Q
COWCR	583	6.8	13.7	11.9	0.0	1.5	0 53	22	7	0	122	41	0
COW CREEK	2999	11.1	3.3	35.1	11.7	0.3	04	4	3	0 1	70	0	0
COW CREEK	1949	7.8	11.8	9.4	0.2	0.4	03	23	19	0.5	41	0	0
COW CREEK	3656	64	83	11.9	01	0.2	04	21	42	14	504	28	0
GOW CREEK (NC-1149)	1000	7.7	68	14.0	0.0	1.7	0.53	35	38	0.5	81	0	0
CRAWFORD CR	952	5.1	6.3	77.1	67 8	1,1	0.58	17	15	0.2	406	0	0
FISHHAWK CREEK (JEWEL)	3464	8.4	5.7	44.5	59	76	07	19	36	07	139	52	17
FISHHAWK CREEK (JEWEL)	843	3	20.7	22.4	4.6	0	0.3	18	57	14	305	122	0
FISHHAWK CREEK TRIB A	823	5.1	9.2	32.5	5.5	0	0.5	21	50	22	305	30	D
FISHHAWK CREEK TRIB A	1603	49	15.9	22.1	47	12	0.5	25	57	1.6	305	30	0
GILMORE CR	650	4.8	11.5	32.7	16.4	1.4	0.52	20	10	0	183	20	20
GILMORE CREEK	1616	5.8	4.2	72.4	44 1	2.8	0.45	28	19	0.2	207	0	0
GILMORE CREEK	700	3.9	32.3	12.7	0.0	0	0.21	41	23	0.1	386	0	0
GILMORE CREEK (NC-2154)	1004	10.7	8.7	34.3	28.3	0	0 35	24	28	0.3	61	0	0
GILMORE CREEK TRIB A	2001	5	7	89.2	84.6	2.4	0.55	27	23	0.2	134	0	0
GILMORE CREEK TRIB A	1022	3.6	16.5	24.9	0.0	0	0 27	37	28	02	625	46	0
HAMILTON CREEK	1095	10	36	50.1	46	33	05	13	15	0.3	91	0	0
HAMILTON CREEK	2540	7.5	6.2	29.4	3.0	1.4	0.5	15	22	0.3	326	60	12
HAMILTON CREEK	2019	5.8	7.6	17.7	0.3	0	0.4	23	31	0.8	229	48	24

R2 Resource Consultants, Inc.

1485_UpperNehalemWatershedAnalysis_121405

Table 10-2. (cont) Upper Nehalem River Habitat Summaries by 5th Field HUC. Data obtained from Kavanagh et al. (2005).

ODF NEHALEM	PROJECT AREA:	HUC 1710020203
-------------	---------------	----------------

REACH SUMMARY

		ACTIVE	CHANNEL		PERCENT		RESIDUAL	W	DOD DEBRIS		CONIFER	RIPARIAN C	ONIFERS
	REACH	CHANNEL	WIDTHS/	PERCENT	SLACKWATER	POOLS	POOL	PIECES	VOLUME	KEY PIECES	TREES	#>20in dbh	#>35in dbh
STREAM	LENGTH (m)	WIDTH (m)	POOL	POOLS	POOLS	>1m DEEP/km	DEPTH (m)	#/100m	(m3)/100m	#/100m	TOTAL/1000ft	/1000ft	/1000ft
HAND TON ODGEN THE A	284		4.0	20.2	1.5	12	0.5	10	22	0.1	0	0	0
HAMILTON CREEK TRIBA	100	14	4.0	30.3	10	12	05	10	32	2.4	305	20	0
HAMILTON CREEK TRIBA	1394	5.6	0.0	32.0	42	0.0	04	21	09	24	300	20	0
HAMILTON CREEK TRIB A	326	22	148.2	48	0.0	0	03	37	20	0.6	853	0	0
HAMILTON CREEK TRIBAT	10/0	2.9	10.0	21.7	0.0	0	0.5	17	47	1.6	215	0	0
HAMILTON CREEK TRIB B	405	6.2	99	8.0	0.4	1.5	0.4	37	40	0.0	192	01	0
HAMILTON CREEK TRIB B	021	0.9	10.5	10.0	0.0	1.5	0.5	35	65	2.3	305	20	0
HAMILTON CREEK TRIB B	903	0.4	7.9	14 7	16.0	0.7	0.4	25	35	1.5	213	30	10
KLINES CREEK	2013	49	7.0	40 2	15.0	07	0.5	×	3	10	122	30	0
KLINES CREEK	3636	3.8	24.1	30.0	21.9	0	0.5	18	37	1.9	433	97	0
KLINES CREEK	11/2	4.7	254	2.9	3.0	0	0.4	19	55	3.3	305	01	20
MOORES CREEK	1415	4.3	167	12.2	0.6	0	02	8	15	0.9	142	01	20
MOORES CREEK	2193	32	122.7	1.2	0.0	0	0.3	19	32	1	1097	30	0
NETTLE GREEK	395	41	20.5	13.4	0.0	0	0.28	9	4	0	61	61	0
NETTLE GREEK	297	4.1	6.5	6.5	0.0	0	0.23	32	23	0	91	61	U
NETTLE CREEK	734	3.4	27.5	2.2	0.0	D	0.28	38	31	0.8	366	61	0
NETTLE CREEK	1408	3,5	72.2	1.5	00	Q	0 35	21	41		1768	305	122
NORTH FORK QUARTZ CREEK	1159	6.6	8.5	17.2	8.0	0.7	0.43	36	67	2.6	0	0	0
NORTH FORK WALKER CREEK	2063	5.4	22.4	6.1		0	0.3	35	82	13	739	8	8
OSWEG CREEK	520	1.8	83.9	1.4	0.3	0	0.15	29	81	3.1	284	81	0
OSWEG CREEK	1680	3.9	30.1	6.1	1.1	0	0.3	23	27	1	112	20	0
OSWEG CREEK	1028	2.1	0	0.0	0.0	0-	0	15	16	0.6	61	0	a
QUARTZ CREEK, SURVEYED AS NF	2090	12.6	B.9	6.8	0.0	13	0.5	20	14	O	406	0	0
QUARTZ CREEK, SURVEYED AS NF	995	12.3	6.8	6.9	0.0	2.8	0.52	34	36	0.7	30	30	0
QUARTZ CREEK, SURVEYED AS NF	572	8.5	5.9	25.9	0.0	11.7	0.92	51	60	0.7	122	0	0
SLAUGHTERS CREEK	548	3.4	9.6	28.5		0	0.2	30	76	36	30	30	0
SLAUGHTERS CREEK	594	3.1	79	34 5		Ω	0.2	30	63	1.5	447	122	20
SOUTH FORK QUARTZ CREEK	373	7.5	7.1	10 5	0.0	0	0.42	34	32	0.3	183	0	0
SOUTH FORK QUARTZ CREEK	870	3.7	17.3	16.0	0 1	1.1	0 55	5	2	0	183	0	0
SOUTH FORK WALKER CREEK	285	6	4.9	19.4	0.0	Ö	0.3	56	112	4.2	61	0	0
STANLEY CREEK	582	6.7	3.8	26.6	0.7	0	0.2	11	19	0.7	91	0	0
STANLEY CREEK	281	86	2.7	32 9	19	0	0.2	26	28	04	244	0	0
STANLEY CREEK	542	8.4	3.4	31.1	0.0	1.5	03	27	92	0.7	386	102	0
STANLEY CREEK	1466	7.1	4.3	25.7	0.5	0.6	0.3	40	67	1.2	549	61	0
STANLEY CREEK	519	8.3	4.3	22.4	0.2	0	0.3	43	54	1.3	152	0	0
TRAILOVER CREEK	2026	5.6	4	74.3	55.9	2.8	0.41	45	22	0.1	96	35	9
TRAILOVER CREEK	1425	4.9	300 1	2.8	2.8	0	0	43	57	1.7	163	18	0
TRAILOVER CREEK	2870	3.8	26	10.3		0		36	33	1	305	12	0
WALKER CREEK	8013	9.9	4.9	54.0	1.9	83	0.6	12	8	0	145	20	0
WALKER CREEK	2182	6.7	8.2	42.9	20.7	4	0.6	15	13	0.6	268	0	0
WALKER CREEK	2269	10	5 1	27 2	24	0.4	0.6	19	32	12	98	61	12
WALKER CREEK	270	10.5	4.3	44.8	00	0	0.5	13	12	O	305	244	0
WALKER CREEK	688	8.6	6	24.8	1.1	0	0.5	22	52	2.5	61	0	0
WALKER CREEK	2104	8.4	67	16.4	5.7	04	0.4	45	92	2.1	76	15	0
WALKER CREEK	1994	5	11	96.4	56.4	7.3	0.5	14	20	0.6	98	12	0
WALKER CREEK	3288	3.7	6.7	91.4	11.9	0.6	0.4	23	50	2	523	122	5
WALKER CREEK (NC-2130)	1009	46	77	93.8	72 5	7.9	0 67	11	9	0	81	0	0

R2 Resource Consultants, Inc.

1485_UpperNehalemWatershedAnalysis_121405

10-14

Oregon Department of Forestry

Table 10-2. (cont) Upper Nehalem River Habitat Summaries by 5th Field HUC. Data obtained from Kavanagh et al. (2005).

ODF NEHALEM PROJECT AREA: HUC 1710020202 REACH SUMMARY

% AREA FINES IN GRAVEL IN LARGE STREAM SURVEY DATE REACH IN SIDE GRADIENT VWI "VALLEY "CHANNEL **'LAND USE** SHADE BEDROCK RIFFLES RIFFLES BOULDERS LENGTH (m) CHANNELS FORM FORM DOM SUB-DOM % % % % #/100m COW CREEK 8/7/2000 2769 41 2.6 5.3 CT CA ST 92 14 16 26 3.3 COW CREEK 2854 3.5 6.5 CT CA ST 87 49 8/9/2000 22 4 41 0.1 COW CREEK 8/15/2000 783 10 13.4 13 SV CH ST 90 22 67 00 1 13932 17.8 CT CT ΥT TH 87 DEEP CREEK 8/8/1994 0.3 04 5 45 46 03 DEEP CREEK 8/9/1994 4108 08 0.8 11.2 CT CT TH MT 87 2 34 58 09 3599 CT CT ТH ΥT 17 DEEP CREEK 8/15/1994 09 0.9 8.5 88 33 48 24 DEEP CREEK 7/27/1999 1991 1.0 0.5 3.6 CT CA ST 85 21 23 33 0.7 DEEP CREEK 7/28/1999 472 08 0,9 1 OV CH ST 89 23 35 11.9 7 5 CT CA ST DEEP CREEK 7/28/1999 245 19 0.3 90 1 35 40 0.0 DEEP CREEK (TRIB) 7/28/1999 310 4.0 0.5 3 CT CA ST 87 3 23 35 0.3 DEEP CREEK (TRIB) 7/29/1999 893 24 27 3 CT CT ST 91 12 21 35 0.0 385 1.6 38 13 MV CH ST 90 33 DEEP CREEK (TRIB) 7/29/1999 10 28 0.0 357 8 CT СТ ST 92 DEEP CREEK (TRIB) 9/9/1999 0.0 03 0 00 DEEP CREEK SURVEYED AS TRIB A 9/13/1999 498 0.0 18 28 CT CT ST YT 90 6 60 36 46 CT CT ST YT 70 FISHHAWK CR (NC-2308) 9/8/2004 532 0.0 3.2 64 10 24 33 FISHHAWK CREEK (ABOVE LAKE) 7/31/1996 2158 3.4 1.7 15 MV CH YT ST 96 15 30 33 2.5 FISHHAWK CREEK (ABOVE LAKE) 8/1/1996 1576 4.8 0.3 3.8 CT CT ST 84 7 62 28 0.0 ΥT FISHHAWK CREEK (ABOVE LAKE) 8/28/1996 1422 40 2.3 3 MT CA 54 40 7 36 0.2 MV CH ΥT ST FISHHAWK CREEK (ABOVE LAKL) 8/28/1996 1035 5.9 43 16 69 3 33 50 3.0 LOUISGNONT CR 8/22/2000 877 0.9 0.6 45 CT CT ST YT 94 2 38 47 00 2605 3.8 47 CT CT YT ST 90 LOUSIGNONT CREEK 8/16/2000 1.5 4 22 60 01 84 7 LOUSIGNONT CREEK 8/23/2000 2202 5.6 5.8 CT CT ΥT ST 93 13 26 0.0 CT CT ΥT ST 92 LOUSIGNONT CREEK 8/29/2000 1166 28 7.7 44 3 62 34 03 NORTHRUP CR 9/10/2001 1090 7.8 1.3 5.4 MT CA ST 93 17 10 46 0.4 NORTHRUP CREEK 7/5/2000 831 5.3 0.8 12.9 CT CT ST 77 6 15 39 0.4 NORTHRUP CREEK 7/6/2000 4170 1.7 1.1 81 CT CT ST 74 9 26 59 0.8 NORTHRUP CREEK 7/18/2000 2440 8.6 1.6 49 CT CA ST 82 19 16 39 4.1 NORTHRUP CREEK 7/24/2000 3489 7.1 78 2 MV CH ST 86 9 20 41 2.4 932 13.9 1.1 MV CH ST 98 10 NORTHRUP CREEK 7/31/2000 0.8 19 26 1.3 4.2 NORTHRUP CREEK TRIBUTARY A 8/2/2000 2219 6.6 1.5 CT CA ST 83 3 24 58 1.8 27 MV CH ST 35 NORTHRUP CREEK TRIBUTARY A 8/3/2000 556 3.3 2 85 17 41 0.0 OAK RANCH CREEK 7/31/1995 2845 21 14 34 CT CA ST TH 87 1 16 36 12.5 32 1.3 OV CH ST SAGER CR 8/9/2000 1073 54 60 0 71 17 32 CT SAGER CREEK 9/14/1995 2825 0.0 08 2.4 CT LT ST 84 5 64 23 24 73 SAGER CREEK 10/2/1995 3709 0.4 1.9 1.9 MV CH ST ΥT 2 86 10 0.6 ST SAGER CREEK (NC-2365) 1075 1.1 51 1.5 MV CH TΗ 86 5 0 5.5 8/21/2003 0 TRESTLE CREEK 8/14/1997 823 0.5 16 3.9 MT US LT 91 0 97 2 28 TRESTLE CREEK 8/14/1997 296 13 8.5 1 MV CH LT 94 0 65 30 0.0 827 39 27 48 CT ÇA YT ST 87 17 WARNER CREEK 9/9/1996 16 46 3.3 WARNER CREEK 9/9/1996 606 4.5 2.2 1 MV CH YT ST 82 43 43 4.5 8 1070 2 2.4 CT YT WARNER CREEK 9/10/1996 4.0 CA ST 89 0 30 66 0.3 1282 27 1.2 MV CH ST YT 91 28 58 WARNER CREEK 9/10/1996 5.1 1 13 7.7 1.9 MV CH ST WARNER CREEK TRIB A 9/12/1996 524 07 92 16 20 30 3.1 WARNER CREEK TRIB B 9/11/1996 399 0.0 8.1 1 MV СН ΥT ST 88 1 35 33 4.5 WARNER CREEK TRIB C 226 13.3 MV CH YT ST 75 9/11/1996 0.0 1 1 34 52 0.0

R2 Resource Consultants, Inc.

1485 UpperNehalemWatershedAnalysis 121405

Table 10-2. (cont) Upper Nehalem River Habitat Summaries by 5th Field HUC. Data obtained from Kavanagh et al. (2005).

ODF NEHALEM PROJECT AREA: HUC 1710020202 REACH SUMMARY

		ACTIVE	CHANNEL		PERCENT		RESIDUAL	W	OD DEBRIS		CONIFER	RIPARIAN CO	ONIFERS
	REACH	CHANNEL	WIDTHS/	PERCENT	SLACKWATER	POOLS	POOL	PIECES	VOLUME	KEY PIECES	TREES	#>20in dbh	#>35in dbb
STREAM	LENGTH (m)	WIDTH (m)	POOL	POOLS	POOLS	>1m DEEP/km	DEPTH (m)	#/100m	(m3)/100m	#/100m	TOTAL/1000ft	/1000ft	/1000ft
COW CREEK	2769	6.7	6	30.2	1.0	0.3	0 43	25	27	1	163	20	10
COW CREEK	2854	4.7	14.1	44.5	0.8	0.3	0.49	38	65	2.6	61	20	0
COW CREEK	783	3	55.3	73.0	73.0	2.4	0.77	23	47	3.4	427	122	61
DEEP CREEK	13932	9.8	7.2	68.5	11.5	5.3	0.6	10	19	0.7	230	0	0
DEEP CREEK	4108	11	9.4	47.2	17.4	3.8	0.8	6	16	0.9	610	0	0
DEEP CREEK	3599	14 4	10.7	13.3	25.8	1.1	0.6	5	16	0.6	508	0	0
DEEP CREEK	1991	6.3	7.9	46.3	0.8	0	0.48	53	115	7.4	716	30	0
DEEP CREEK	472	7.5	4.2	66.0	0.9	0	0.39	77	192	9.5	853	183	0
DEEP CREEK	245	5.1	4.5	94.4	9.6	3.9	0.51	28	56	3.7	549	61	0
DEEP CREEK (TRIB)	310	5	2.6	82.7	2.0	0	0.43	62	116	5.2	61	0	0
DEEP CREEK (TRIB)	893	3.9	26.6	46.9	2.2	0	0.4	6	12	0.7	183	O	0
DEEP CREEK (TRIB)	385	2.8	7.8	71.6	5.0	5.2	0.5	65	155	9.9	427	D	0
DEEP CREEK (TRIB)	357	3.8	18.8	95.0	95.0	0	0.26	21	14	0.3	183	183	0
DEEP CREEK SURVEYED AS TRIB A	498	4.7	11.8	71.0	0.0	0	0.3	17	35	2.8	549	366	0
FISHHAWK CR (NC-2308)	532	5	5.1		16.6	0	0.31	21	22	0.6	264	81	0
FISHHAWK CREEK (ABOVE LAKE)	2158	9,2	4.4	58.5	2.9	9.5	0.8	36	59	1.9	61	30	15
FISHHAWK CREEK (ABOVE LAKE)	1576	6.2	5.9	71.8	10.8	14.6	0.8	14	21	0.8	122	30	0
FISHHAWK CREEK (ABOVE LAKE)	1422	8	3.6	66.4	46.2	4.5	0.5	31	56	3.4	533	46	0
FISHHAWK CREEK (ABOVE LAKE)	1035	5.8	4	47.0	7.9	0	0.4	33	106	5.7	508	61	41
LOUISGNONT CR	877	6.4	3.7	79.7	18.1	1.1	0.44	25	25	0.9	1630	20	20
LOUSIGNONT CREEK	2605	67	3.9	64.5	14.9	1.1	0.52	23	33	1.7	70	26	9
LOUSIGNONT CREEK	2202	4 1	20.1	13.8	0.7	0	0 35	23	39	2	122	61	0
LOUSIGNONT CREEK	1166	19	128.3	5.7	0.0	0	0.53	25	29	0.6	366	0	0
NORTHRUP CR	1090	10.5	3.1	69.9	13.7	0	0.41	20	7	D.1	0	0	0
NORTHRUP CREEK	831	12.3	22	63.8	1.1	12.8	0.68	21	20	0.7	0	0	0
NORTHRUP CREEK	4170	8.1	3.6	66.9	2.2	10.5	0.7	22	16	0.6	73	12	0
NORTHRUP CREEK	2440	8.7	5.4	29.7	1.1	0.3	0.47	29	27	0.4	0	0	0
NORTHRUP CREEK	3489	6.8	19.8	7.2	0.5	08	0.57	29	43	0.7	198	15	0
NORTHRUP CREEK	932	2.5	0	0.0	0.0	0	0	14	30	0.9			
NORTHRUP CREEK TRIBUTARY A	2219	4.7	13.2	28.7	10.7	0	0.45	28	53	2.3	61	20	0
NORTHRUP CREEK TRIBUTARY A	556	33	0	0.0	0.0	0.	0	34	34	0.2	488	0	0
OAK RANCH CREEK	2845	6.6	6.5	47.3	17.4	1.7	0.4	9	15	0.8	44	0	0
SAGER CR	1073	5.1	14.6	66.0	62.6	5.4	0.65	19	52	3.9	284	81	0
SAGER CREEK	2625	6.8	10.7	74.2	20.2	1.9	0.6	11	22	0.5	102	0	0
SAGER CREEK	3709	4.1	11.5	80.4	54.5	2.7	0.4	17	50	1.6	200	0	0
SAGER CREEK (NC-2365)	1075	4.2	29.1	17.7	3.6	0	0.45	17	35	0.7	325	20	20
TRESTLE CREEK	823	3.5	59.4	10.5	0.0	0	0.4	24	44	2.1	610	0	0
TRESTLE CREEK	296	2.3	0	0.0	0.0	0	0	32	80	3	0	0	0
WARNER CREEK	827	8.2	3.9	49.7	16.3	34	0.4	22	22	0.7	30	0	0
WARNER CREEK	606	7.6	4.4	39.7	0.2	3.1	0.6	46	44	1.7	152	0	0
WARNER CREEK	1070	6	5.1	50.3	9.4	2.6	0.6	28	25	0.5	274	0	0
WARNER CREEK	1282	5	7.1	31.9	06	0.7	0.5	37	42	1.5	203	0	0
WARNER CREEK TRIB A	524	4	8.7	22.3		0	0.4	31	34	0.8	427	0	0
WARNER CREEK TRIB B	399	4.3	13.3	13.5		0	0.4	35	60	3	61	0	0
WARNER CREEK TRIB C	226	2.3	19.7	20.2		0	0.4	64	103	6.6	183	0	0

R2 Resource Consultants, Inc.

1485_UpperNehalemWatershedAnalysis_121405

10-16

Oregon Department of Forestry

Table 10-2. (cont) Upper Nehalem River Habitat Summaries by 5th Field HUC. Data obtained from Kavanagh et al. (2005).

ODF NEHALEM PROJECT AREA: HUC 1710020201 REACH SUMMARY

			% AREA									FINES IN	GRAVEL IN	LARGE
STREAM	SURVEY DATE	REACH	IN SIDE	GRADIENT	VW	VALLEY	'CHANNEL	'LA	ND USE	SHADE	BEDROCK	RIFFLES	RIFFLES	BOULDERS
		LENGTH (m)	CHANNELS			FORM	FORM	DOM	SUB-DOM	%	%	%	9/2	#/100m
BEAR CREEK	5/26/1997	853	2.2	1.9	4.5	MT	CA	ST		93	3	31	38	0.9
BEAR CREEK	5/26/1997	989	21	1.9	1.1	MV	CH	LT		92	6	56	32	12
BEAR CREEK	5/27/1997	822	1.0	2.6	2.7	MT	CA	ST	LT	88	5	67	31	0.6
CARLSON CREEK	8/29/1995	2968	01	2.8	1.8	OV	CH	ST	LT	87	2	60	20	0.5
CLEAR CREEK	7/7/1994	1691	4.1	2.4	56	CT	CA	TH	YT	90	0	55	35	0.1
DELL CREEK	7/11/1994	1302	3.8	17	24	OV	CH	ST		92	1	1	62	0.4
DELL CREEK	7/13/1994	457	1.8	2	5.8	MT	CT	ST		80	0	5	48	0.0
DERBY CREEK	9/22/1998	530	23.7	5.7	42	MT	US	ST	LT	90	0	33	26	149.6
LOUISIGNONT CREEK	8/18/1993	2600	9.7	0.9	61	CT	CA	LT	YT	93	6	32	58	1.1
LOUISIGNONT CREEK	8/24/1993	2911	19.4	1.7	4.9	MT	UA	LT	MT	98	0	37	49	0.0
LOUISIGNONT CREEK	8/26/1993	3420	7.4	4.8	1.7	SV	CH	LT	MT	97	6	40	38	4.8
LOUSIGNONT CR	6/30/1999	397	3.6	3.4	13	SV	CH	ST		79	0	44	29	0.0
LOUSIGNONT CREEK (NC-1268)	7/2/2002	442	10.3	6.1	3.9	MT	US	LT		90	0	10	48	0.7
N. FK. LOUSIGNONT CR (NC-1289)	8/12/2004	872		0.9	5.5	CT	CT	ST		76	0	63	35	
NORTH FORK ROCK CREEK	7/15/1993	1387	78	11	4.1	CT	CA	ST	ST	96		3	47	13.2
NORTH FORK ROCK CREEK	7/19/1993	1553	40 3	1	9.6	WVF	US	ST	ST	94		9	50	4.0
NORTH FORK ROCK CREEK	7/21/1993	453	0.6	48	33	MV	CH	ST	ST	94		4	29	22.5
NORTH FORK WOLF CREEK	8/24/1992	1293	0.8	12	14.9	CT	CA	ST		87	29	24	43	3.9
NORTH FORK WOLF CREEK	8/24/1992	1514	1.3	17	26	SV	CH	ST		87	23	23	43	3.8
NORTH FORK WOLF CREEK	8/31/1992	1454	42	24	2	SV	CH	ST		87	13	26	65	2.7
NORTH FORK WOLF CREEK	9/1/1992	722	4.5	1.5	6.2	WF	US	ST		88	0	26	59	0.0
NORTH FORK WOLF CREEK	9/2/1992	1172	6.2	3.6	18	MV	CH	ST		98	2	44	46	1.3
OLSON CR (NC-1048)	9/1/2004	1053		0.8	21	MV	CH	ST	-	73	O	62	39	
ROCK CREEK	7/1/1993	582	6.8	0.6	3	CT	CT	TH	ST	99	7	8	32	75.4
ROCK CREEK	8/11/1993	669	4.4	29	1.5	MV	CH	ST		95	3	5	20	323 5
ROCK CREEK	8/12/1993	794	2.7	0.9	13.3	WF	US	ST		69	1	1	36	0.1
SOUTH FORK NEHALEM RIVER	9/12/1995	1396	23	4 3	1.3	MV	CA	ST	LT	94	1	30	47	3.8
SOUTH FORK NEHALEM RIVER	9/13/1995	1877	42	15	1.2	MV	CH	ST	LT	94	13	23	28	7.2
SOUTH FORK ROCK CREEK	8/3/1993	4670	1.8	2.3	12 1	MT	CT	ST	ST	95		2	35	14 9
SOUTH FORK ROCK CREEK	8/4/1993	188	00	7.5	1	SV	CH	ST	ST	99		0	67	58.5
SOUTH FORK ROCK CREEK	8/4/1993	490	0.0	3.1	7.8	CT	CT	ST	ST	97		4	66	0.8
SOUTH FORK ROCK CREEK	8/5/1993	2756	0.3	5.1	24	SV	CH	ST	TH	90		2	47	17.8
UPPER NEHALEM RIVER	8/31/1995	6079	4.5	2.3	26	CT	CA	LT		96	6	29	36	7.8
UPPER NEHALEM RIVER	9/11/1995	3517	3.1	91	1.9	MV	CH	LT		97	12	61	25	1.7
WOLF CREEK	7/15/1997	1690	5.0	3.5	1.2	MV	CH	LT		88	15	15	34	3.8
WOLF CREEK	7/15/1997	2455	2.2	6.3	1	SV	CH	MT		85	14	11	34	7.8
WOLF CREEK	7/16/1997	905	04	10.8	1	SV	CH	YT	LT	63	27	15	55	11.5

Table 10-2. (cont) Upper Nehalem River Habitat Summaries by 5th Field HUC. Data obtained from Kavanagh et al. (2005).

ODF NEHALEM PROJECT AREA: HUC 1710020201

REACH SUMMARY

		ACTIVE	CHANNEL		PERCENT		RESIDUAL	W	DOD DEBRIS		CONIFER	RIPARIAN C	ONIFERS
	REACH	CHANNEL	WIDTHS/	PERCENT	SLACKWATER	POOLS	POOL	PIECES	VOLUME	KEY PIECES	TREES	#>20in dbh	#>35in dbh
STREAM	LENGTH (m)	WIDTH (m)	POOL	POOLS	POOLS	>1m DEEP/km	DEPTH (m)	#/100m	(m3)/100m	#/100m	TOTAL/1000ft	/1000ft	/1000ft
BEAR CREEK	853	5.8	7,7	47.2	8.5	5.6	0.6	35	28	0.8	213	0	0
BEAR CREEK	989	6.8	9.5	48.4	6.8	2.9	0.6	38	31	0.6	671	0	0
BEAR CREEK	822	2.5	10.4	89.4	88.3	3.3	0.5	31	22	0.5	396	30	0
CARLSON CREEK	2968	11.5	8.1	53.8	42.5	0.7	0.5	15	23	0.4	1240	203	20
CLEAR CREEK	1691	5.3	6.1	47.4	1.2	2.3	0.5	22	65	1.1	213	0	0
DELL CREEK	1302	5	5.5	60.3	12.8	0	0.4	44	34	0.5	290	12	0
DELL CREEK	457	2.9	16.5	18.5	6.5	0	0.4	32	28	0	701	0	0
DERBY CREEK	530	3.6	10	18.9	0.9	0	0.39	23	15	0.2	691	41	0
LOUISIGNONT CREEK	2600	10.3	3	65.4	2.0	2.5	0.6	23	16	0.2	260	30	0
LOUISIGNONT CREEK	2911	10	3	38.4	4.4	0.2	0.5	23	21	0.6	253	79	12
LOUISIGNONT CREEK	3420	6.9	6.8	25.8	0.6	0.9	0.4	41	59	1.5	441	121	0
LOUSIGNONT CR	397	3.7	8.3	15.3	2.5	0	0.43	39	82	4.3	1321	0	0
LOUSIGNONT CREEK (NC-1268)	442	4.7	5.4	16.6	0.8	0	0.3	23	29	0.5	325	122	0
N. FK. LOUSIGNONT CR (NC-1289)	872	7.3	5.2		87.2	0	0.41	20	17	0.7	467	41	0
NORTH FORK ROCK CREEK	1387	7.7	3.5	49.9			0.5	54	155		670	0	0
NORTH FORK ROCK CREEK	1553	3.5	7.9	59.8			0.4	39	78		483	0	Q
NORTH FORK ROCK CREEK	453	3.5	10.8	25.9			0.4	51	91		1116	121	0
NORTH FORK WOLF CREEK	1293	9.1	3.8	61.8	9.3	3	0.4	7	7	0.2		0	0
NORTH FORK WOLF CREEK	1514	7.7	5.5	33.0	0.1	4.5	0.4	16	13	0.3		0	0
NORTH FORK WOLF CREEK	1454	6.7	5.4	46.0	0.2	2.5	0.5	29	29	1.5		0	0
NORTH FORK WOLF CREEK	722	4.3	6	55.9	0.7	0	0.5	22	44	28		0	0
NORTH FORK WOLF CREEK	1172	6.9	3.8	40.9	1.7	0.8	0.4	31	54	3.9		D	0
OLSON CR (NC-1046)	1053	10.1	7.5		88.2	19	0.48	21	33	0.6	1138	0	O
ROCK CREEK	582	17	8.6	9.8	1.2	3	0.6	6	12	0.4		0	0
ROCK CREEK	669	8.5	19.7	26.2	18.6	4.2	0.8	11	35	2.4	845	60	0
ROCK CREEK	794	8.2	9.7	38.6	10.5	7.8	1	9	14	0.4	0	0	0
SOUTH FORK NEHALEM RIVER	1396	9.6	15.1	12.1	0.0	1.4	0.7	28	38	0,7	610	122	0
SOUTH FORK NEHALEM RIVER	1877	11	89.9	1.2	0.0	0	0.4	23	44	0.9	549	122	0
SOUTH FORK ROCK CREEK	4670	7.1	8.3	27.6			0.6	20	28		338	48	0
SOUTH FORK ROCK CREEK	188	4	11.8	20.7			0.5	54	86		1448	241	0
SOUTH FORK ROCK CREEK	490	6.3	5.2	52.0			0.5	19	22		1207	91	30
SOUTH FORK ROCK CREEK	2756	4	19.1	14.8			0.4	31	65		748	133	42
UPPER NEHALEM RIVER	6079	14	9,5	15.8	0.0	2.9	0.7	15	18	0.4	315	91	0
UPPER NEHALEM RIVER	3517	10	34.4	17.7	3.3	0	0.5	26	59	2.2	549	213	30
WOLF CREEK	1690	7	11	16.3	1.3	4.7	0.7	30	16	0.1	366	0	0
WOLF CREEK	2455	6.9	24.4	82	0.6	0	0.5	22	28	0.9	701	0	υ
WOLF CREEK	905	24	190.7	21	0.0	0	0.6	19	39	14	549	0	0

R2 Resource Consultants, Inc. 1485 UpperNehalemWatershedAnalysis_121405

area, percent channel shading. According to Kavanagh et al (2005), dissimilarities between the upper Nehalem and reference conditions were evident for percent fine sediments and riparian attributes. The upper Nehalem streams had greater amount of fine sediments in riffle habitat compared to reference sites. Seventy five percent of the surveyed reaches had greater than 8 percent fines in riffle. With respect to the six wood attributes, the Nehalem streams were lower in terms of density of wood pieces, density of wood volume, key wood pieces, as well as in all three densities of riparian conifers. In addition, although channel shading in upper Nehalem was similar to reference stream condition this shading was provided by predominantly hardwood species as indicated by the lower number of large and very large riparian conifers in upper Nehalem reaches. The counts of large and very large riparian conifers were zero in 37 percent and 72 percent respectively of the upper Nehalem reaches surveyed. These findings are not surprising given that the Project area is managed for forestry where as the reference stream are located within unmanaged and relatively unimpacted systems.

When individual reach data were compared to reference conditions it was clear that there are reaches within these upper Nehalem streams that support excellent habitat conditions (Kavanagh et al. 2005). These reaches were identified by five or more attributes that were similar to or better than conditions in reference reaches. Table 10-3 identifies these reaches and their high quality habitat parameters by 5th Field HUC.

10.3.3 Fish Passage Barriers

Fish passage barriers at stream crossings were identified during 2005 road information management system (RIMS) surveys of all forest roads within the project area. Based on the RIMS database, a total of three passage barriers on known fish bearing streams exist in the project area as a result of road crossings. All three barriers were assessed to restrict passage of juvenile fish only. A description of fish barriers at stream crossings is provided in Section 8.2.5 and in Table 8-9.

10.3.4 Key Large Wood

Kavanagh et al. (2005) reported that large wood was relatively rare in upper Nehalem streams. According to the ODFW reference criteria, more than 3 pieces of large wood constitutes a high level, less than 0.5 pieces constitutes a low level, and from 0.51 to 2.9 pieces constitutes a moderate level. The data on large wood from Table 10-2 indicated that 61 percent of upper Nehalem surveyed stream reaches a moderate amount of key large wood. Twelve percent of the reaches had high levels of key large wood while 27 percent had low levels. It is important to not that the following streams had surveyed reaches that were lacking any key large wood: Cow Creek, Gilmore Creek, Nettle Creek (2 reaches), Osweg Creek, South Fork Quartz Creek, Walker Creek (3 reaches), Dell Creek. Table 10-4 denotes levels of key pieces of large wood for stream reaches by management basin.

Table 10-3.	Excellent quality reach habitats within the upper Nehalem as defined in Kavanagh et al.
	(2005).

Management Basin	Stream Name	High quality habitat characteristics	
Wheeler	South Fork Rock Creek	0% fines in riffles, >60% gravel in riffles, large wood >50 pieces/100m, >200 large riparian conifers	
Sager	Deep Creek	~ 66% pools, large wood >75 pieces/100m, wood volume >192, ~9 key pieces large wood/ 100m, 183 large riparian conifers	
	Tributary to Deep Creek	~72% pools, ~ 5% deep pools, large wood >65 pieces/100m, wood volume >155, ~10 key pieces large wood/ 100m, 183 large riparian conifers	
Fishhawk	Fishhawk Creek	47% pools, ~ 8% deep pools, large wood >33 pieces/100m, wood volume >105, ~6 key pieces large wood/ 100m, ~6% secondary channel area	
Beneke	Beneke Creek	large wood >29 pieces/100m, wood volume >79, ~4 ke pieces large wood/ 100m, 168 large riparian conifers, ~6% secondary channel area	
Buster	ter Buster Creek 8% fines in riffles, 60% gravel in riffles, ~6% deep, 9% secondary channel area		
Buster Creek 7% fines in riffles, 78% gra ~6% >23 pieces large wood channel area		7% fines in riffles, 78% gravel in riffles, \sim 76% pools, \sim 6% >23 pieces large wood/100 m, \sim 14% secondary channel area	
	Buster Creek	57% gravel in riffles, ~ 62% pools, ~14% slack water, ~6% deep, 21 pieces large wood/100 m, ~9% secondary channel area	
	Tributary to Buster Creek	73% pools, 73% slack water, >21% deep pools, large wood >45 pieces/100m, wood volume >259, ~5 key pieces large wood/ 100m,	
	Cow Creek	67% gravel in riffles, 73% pools, 73% slack water, >22 pieces large wood, 3.4 key pieces large wood	
	North Fork Rock Creek	3% fines in riffles, ~ 50% pools, large wood >50 pieces/100m and >154 volume, 7.8% area of secondary channels	

Oregon Department of Forestry

	Level of Key Pieces of Large Wood			
Management Basin	High (>3 pieces/100 m)	Medium (0.6 – 3 pieces/100 m)	Low (<0.5 pieces/ 100 m)	
Wheeler		Bear Creek (2)	Bear Creek	
			Carlson Creek	
			Derby Creek	
	Lousignont Creek	Lousignont Creek (2)	Lousignont Creek (2)	
		N. Fork Lousignont Creek		
		S Fork Nehalem River		
		Upper Nehalem River	Upper Nehalem River	
		Wolf Creek (2)	Wolf Creek	
McGregor		Clear Creek		
	N. Fork Wolf Creek	N. Fork Wolf Creek	N. Fork Wolf Creek (2)	
		Olson Creek		
		Rock Creek	Rock Creek (2)	
Sager	Sager Creek	Sager Creek (3)		
	Deep Creek (3)	Deep Creek (3)		
	Deep Creek Tributary (2)	Deep Creek Tributary (2)	Deep Creek Tributary	
	Slaughter's Creek	Slaughter's Creek		
Lousignot	<u> </u>	Lousignot Creek		
Fishhawk	Fishhawk Creek (above lake) (2)	Fishhawk Creek (above lake) (2)		
		Fishhawk Creek		
•	Trestle Creek	Trestle Creek (2)		
		Warner Creek (3)	Warner Creek	
	Warner Creek Tributaries (3)	Warner Creek Tributary		
Northrup	Cow Creek	Cow Creek		
		Northrup Creek (4)	Northrup (2)	
		Northrup Creek Tributary	Northrup Creek Tributary	
Quartz		Quartz Creek		
			S. Fork Quartz Creek (2)	
Buster		Buster Creek (6)	Buster Creek (6)	
	Buster Creek Tributary	Buster Creek Tributaries (5)	Buster Creek Tributary	
	Cow Creek	Cow Creek (2)	Cow Creek (2)	
			Crawford Creek	
	Klines Creek	Klines Creek (2)	Klines Creek	
		Moores Creek (2)		
		Nettle Creek (2)	Nettle Creek (2)	
	Osweg Creek	Osweg Creek (2)		

Table 10-4. Streams with high, medium and low levels of key pieces of large wood. The number of reaches in parentheses for stream with more than one reach per category.

Table 10-4.	Streams with high, medium and low levels of key pieces of large wood. The number of	
	reaches in parentheses for stream with more than one reach per category.	

	Level of Key Pieces of Large Wood			
Management Basin	High (>3 pieces/100 m)	Medium (0.6 – 3 pieces/100 m)	Low (<0.5 pieces/ 100 m)	
		N. Fork Quartz Creek (2)	N. Fork Quartz Creek	
		Stanley Creek (3)	Stanley Creek	
	S. Fork Walker Creek			
Hamilton		Fishhawk Creek (Jewel) (2)		
		Fishhawk Creek Tributary (2)		
		Hamilton Creek Tributaries (6)	Hamilton Creek Tributary	
		Hamilton Creek	Hamilton Creek (2)	
Beneke	Beneke Creek (2)	Beneke Creek (7)	Beneke Creek (2)	
		Bull Heifer Creek (3)		
		Bull Heifer Creek Tributary		
			Gilmore Creek (3)	
			Gilmore Creek Tributary (2)	
		Trailover (2)	Trailover	
		N. Fork Walker Creek		
			S. Fork Walker Creek	
		Walker Creek (6)	Walker Creek (2)	
Wilark			Dell Creek	
			Derby Creek	
c		Oak Ranch Creek		

10.3.5 Splash Dams

There is little documentation that splash damming occurred in and around the Project Area. The location of 11 permanent splash dams located in western Oregon rivers were documented in Hobbs et al. (2002). Three of these dams appeared to be in the upper Nehalem watershed, but there was insufficient detail to determine if they were located within the Project Area. In addition, no residual effects of splash dams were noted during ODFW Aquatic Inventory habitat surveys (Kavanagh et al. 2005).

10.3.6 Fish Habitat in Contiguous Lands

10.3.6.1 Clatskanie River Basin

Fish Species in the Upper Clatskanie River Basin.

Table 10-5 lists the fish species documented in the upper Nehalem River and their current management status. All of these species are native to the Oregon coastal rivers. Although additional resident and migratory fishes were undoubtedly present in the system, no documentation of those species was available. No information was available on introductions or presence of non-native species in the upper Clatskanie River, nor on their interactions with native species. No information was available to document the extirpation of any native fish species from the upper Clatskanie River basin.

Species	Life histories strategy	Management Status	
Coho salmon	Anadromous	Proposed as threatened under federal ESA as part of the Lower Columbia River ESU. State Endangered.	
One of nynemus kisuten			
Chinook salmon O. tshawytscha	Anadromous, fall race	Listed as Threatened under federal ESA as part of the Lower Columbia River ESU. State sensitive species with critical status.	
Steelhead O. mykiss	Anadromous, winter race	No special status	
Coastal cutthroat trout	Anadromous and	Federal species of Concern	
O. clarki clarki	Resident	State sensitive with vulnerable status	
Pacific lamprey	Anadromous	Federal species of Concern	
Lampetra tridentata		State sensitive with vulnerable status	
Western Brook lamprey L. richardsoni	Resident	No Special Status	

 Table 10-5.
 The management status of fish species distributed in the upper Clatskanie River within the Project area.

The regional distribution, status and abundance of fish species is described in Section 10.3.1. The little information available that pertains specifically to these fishes in the Project Area is summarized below. Coho salmon and winter steelhead have been observed spawning in the sections of the Little Clatskanie and Clatskanie rivers that flow through the Project area (Kavanagh et al. 2005). Coho salmon spawning was observed from mid November to early January while steelhead spawning was observed from mid-April. Pacific lamprey have been observed in the Clatskanie River upstream of Carcus Creek (Kavanagh et al. 2005). Pacific lamprey redds were documented in April and May.

Oregon Department of Fish and Wildlife conducted spawning ground surveys for coho salmon in the Clatskanie River from 1948 to 1997. These data suggested that the abundance of spawning coho salmon decline considerably in the 1960s and 1970s (Rule 2001). Very few coho salmon are thought to return to the Clatskanie River today (Kavanagh et al. 2005). No population information was available for others fish species in the Clatskanie River basin Project Area.

Fish Habitat in the Upper Clatskanie River

Data on fish habitat in the Clatskanie River basin is presented in Rule (2001). This data was not presented in sufficient detail to separate out the reach that flows through ODF land. In general, the Clatskanie River habitat was rated good for pools, fair to poor for riffles, poor for large wood, poor for abundance of conifers and good for shade. Rule (2001) noted that the Clatskanie River had undesirably low levels of wood that there were few large riparian conifers, and that fine sediments were generally high within riffle habitats.

Fish Passage Barriers

Fish passage barriers at stream crossings were identified during 2005 road information management system (RIMS) surveys of all forest roads within the project area. Based on the RIMS database, no fish barriers existed on contiguous lands in the Upper Clatskanie River. A description of fish barriers at stream crossings is provided in Section 8.2.5 and in Table 8-9.

Key Large Wood

Data on key large wood is presented in Table 10-4.

Splash Dams

There is little documentation that splash damming occurred in and around the Project Area. The location of 11 permanent splash dams located in western Oregon rivers were documented in Hobbs et al. (2002). One of these dams appeared to be in the vicinity of the Clatskanie River, but there was insufficient detail to determine if it was located within the Project Area. In addition, no residual effects of splash dams were noted during ODFW Aquatic Inventory habitat surveys (Kavanagh et al. 2005).

10.3.6.2 Young's Bay Watershed

Fish Species in the Upper South Fork of the Klaskanine River

Due to the presence of a 25-foot waterfall on the lower South Fork of the Klaskanine River (E&S Environmental Chemistry and Young's Watershed Council 2000) no anadromous fish species are likely present in the Project Area. Based on their regional distribution, resident cutthroat trout and western brook lamprey most likely are present (Table 10-6). These species are native to the Oregon coastal rivers. Although additional resident and migratory fishes are undoubtedly present in the system. No documentation of those species was available. No information was available on introductions or presence of non-native species in the upper South Fork Klaskanine River, nor on their interactions with native species. No information was available to document the extirpation of any native fish species from the upper South Fork Klaskanine River basin.

 Table 10-6.
 The management status of fish species distributed in the upper South Fork of the Klaskanine River within the Project area.

Species	Life Histories Strategy	Management Status
Coastal cutthroat trout	Anadromous and Resident	Federal species of Concern
O. clarki clarki		State sensitive with vulnerable status
Western Brook lamprey	Resident	No Special Status
L. richardsoni		

The ecology and regional distribution of the fish species present in the Project area are described in Section 10.3. No information was available that pertained specifically to these fishes in the Project Area.

Fish Habitat in the Upper South Fork of the Klaskanine River

No data were available on fish habitat in upper South Fork Klaskanine River within the Project Area. Oregon Department of Fish and Wildlife Aquatic inventory Habitat surveys were conducted in habitats downstream in the South Fork Klaskanine River in 1992 (E&S Environmental Chemistry 2000). The data from these surveys are summarized below. The South Fork Klaskanine survey reaches generally had moderate to good frequency of pools, moderate gravel in riffles, but lacked large wood both in terms of pieces and volume.

Fish Passage Barriers

Fish passage barriers at stream crossings were identified during 2005 road information management system (RIMS) surveys of all forest roads within the project area. Based on the

RIMS database, no fish barriers existed on known fish bearing streams in the Upper South Fork Klaskanine River as a result of road crossings. A description of fish barriers at stream crossings is provided in Section 8.2.5 and in Table 8-9.

Key Large Wood

No data were available on key pieces of large wood for the upper South Fork of the Klaskanine River within the Project Area. Data from habitat surveys downstream showed that all of the surveyed reaches in the South Fork completely lacked key pieces of large wood (E&S Environmental Chemistry 2000).

Splash Dams

Although there is some documentation that splash damming occurred in and around the Project Area historically, no documentation of splash dams in the South Fork Klaskanine River was found.

10.4 AMPHIBIANS IN THE UPPER NEHALEM RIVER

10.4.1 Columbia Torrent Salamander

10.4.1.1 Species Distribution and Status

The Columbia torrent salamander is one of four species (*Rhyacotriton olympicus*, *R. cascadae*, *R. variegatus*, and *R. kezeri*) in the genus Rhyacotriton. Until 1992, the genus was considered to be a single species, all of which were formally known as *R. olympicus*. The geographic ranges of the four species are almost entirely isolated from one another—the single exception being a possible area of overlapping ranges of *R. kezeri* and *R. variegatus* in southern Tillamook County, Oregon (Csuti et al. 1997). The Columbia torrent salamander occurs north of the Little Nestucca River and south of the Chehalis River in the Coast Range of Oregon and Washington (Good and Wake 1992).

The Columbia torrent salamander (*R. kezeri*), also commonly known as the Columbia seep salamander, is classified by the Oregon Department of Fish and Wildlife (ODFW) as "Sensitive-Critical." The species has Natural Heritage Network ranks of Global-3 and State-3 (ORNIC 2004).

10.4.1.2 Natural History

The four species of *Rhyacotriton* are morphologically very similar, but can be differentiated based on pigmentation features, minor variation among some life history characteristics (Good

and Wake 1992), and genetics (Good et al. 1987). There is apparently little variation in habitat selection among the four species of *Rhyacotriton* (Good and Wake 1992).

Torrent salamanders are usually found along the wetted edge of steep streams, seeps, and waterfall splash zones. Diller and Wallace (1996) reported that the average slope of stream reaches occupied by torrent salamanders was 17.6 percent. Torrent salamanders prefer cold environments and begin to exhibit signs of stress at relatively low temperatures (63°F) compared to other salamanders (Brattstrom 1963). The highest abundances of torrent salamanders are observed in water temperatures of 46.4-55.4°F (Welsh and Lind 1996). Adult torrent salamanders are occasionally found in moist, riparian environments as well. However, they are extremely vulnerable to desiccation in terrestrial environments. Ray (1958) demonstrated experimentally that torrent salamanders become physically incapacitated when subjected to more than a 7.4 percent loss of body water, a much lower threshold for water loss than any other salamander tested. Not surprisingly, torrent salamanders are only able to persist out of water in closed-canopy forests (Good and Wake 1992). Welsh and Lind (1996) suggested that torrent salamanders are dependent on the microclimate and habitat structure associated with latesuccessional forests. Diller and Wallace (1996) concluded that highly suitable microhabitats are most likely to exist in late-successional forests, but torrent salamanders are widespread in other habitat types.

Given its low tolerance for warm, dry environments, it would seem likely that torrent salamanders would prefer sites on northerly aspects. Diller and Wallace (1996) found evidence that torrent salamanders were more likely to occur in streams on northern slopes than other aspects when aspect measurements were averaged at a landscape-scale using a geographic information system (GIS). But the same study failed to produce evidence of habitat selection for aspect at a microsite scale (i.e., measured at the point of capture). This is not particularly surprising because stream water temperature (and presumably torrent salamander abundance) is more strongly affected by upstream conditions than aspect or other conditions at the point of temperature measurement. Another California study (Welsh and Lind 1996) tested, but failed to find a significant association between torrent salamander abundance and landscape-scale aspect.

Torrent salamanders reportedly are most abundant in streambed substrates composed of coarse gravel and cobble (Good and Wake 1992; Diller and Wallace 1996; Welsh and Lind 1996). The interstitial spaces among streambed particles are used as oviposition sites and hiding cover by adults and larvae. Good and Wake (1992) report that adult salamanders tend to be found among rocks, while larvae tend to use coarse gravel. Welsh and Lind (1996) suggest that stream reaches having a variety of particle sizes provides the most suitable torrent salamander habitat for hiding,

feeding, and reproduction. However, habitat is degraded where interstitial spaces become filled with sand or fine sediment. Lowell and Diller (1996) found that consolidated geological formations (vs. unconsolidated sedimentary formations) and stream gradient were among the best predictors of torrent salamander occurrence. The authors believed the relationship could be explained by the relatively large streambed particles that result from the decomposition of consolidated bedrock, and the downstream transport of fine particles caused by fast water moving down steep slopes.

10.4.2 Tailed Frog

10.4.2.1 Species Distribution and Status

In Oregon, tailed frogs are distributed throughout the Coast Range, Siskiyou region, western Cascades, and the Blue Mountains (Csuti et al. 1997).

The tailed frog (*Ascaphus truei*) is classified by ODFW as "Sensitive-Vulnerable" and has Natural Heritage Network ranks of Global-4 and State-3 (ORNIC 2004). The U.S. Fish and Wildlife Service (USFWS) considers the tailed frog a Species of Concern in Oregon (USFWS 2004). Neither the torrent salamander nor tailed frog has been determined to be Threatened or Endangered under the federal Endangered Species Act.

10.4.2.2 Life History

Tailed frogs are almost always associated with cold, mountain streams. Unlike most other frogs in the Pacific Northwest, the species does not use lakes or wetlands. deVlaming and Bury (1970) reported that first year tailed frog tadpoles tend to prefer water temperatures $<50^{\circ}$ F, while older tadpoles prefer temperatures $50-71.6^{\circ}$ F. In a stream amphibian survey conducted in the Kilchis River basin (Tillamook Co., OR), water temperatures where tailed frogs were captured averaged 52.2° F (Pacific Wildlife Research, unpublished data).

Tailed frogs appear to select microhabitats depending upon their developmental stage. Adult frogs and more mature larvae tend to occur more often upstream, in steeper and faster waters than less developed larvae (Hayes et al. 2003; Wahbe and Bunnell 2003). Hayes et al. (2003) hypothesize that adult tailed frogs lay eggs in lower reaches where they are more likely to remain submerged during low flow. As larvae mature, they may move upstream to reaches that are unoccupied by fish, which are significant predators of tailed frogs.

Adult tailed frogs are also found outside of stream channels in riparian and upslope forests (Gomez and Anthony 1996; McComb et al. 1993). However, research on tailed frogs does not clearly describe a relationship between forest conditions and tailed frog occurrence or

Oregon Department of Forestry

abundance. Blaustein et al. (1995) suggested that tailed frogs are among the amphibian species most sensitive to the loss of old-growth forests in the Pacific Northwest. Furthermore, Gomez and Anthony (1993) found tailed frogs to be more abundant in large conifer and old-growth forests than in younger forest types in the Oregon Coast Range. In contrast, Bull and Carter (1996) did not find evidence of a relationship between tailed frog abundance and timber harvest intensity in northeastern Oregon. Wahbe and Bunnell (2003) concluded tailed frog abundance was more strongly affected by stream microhabitat features than the logging history of a site.

Cobbles and large rocks in stream channels are important habitat elements for tailed frogs. Tailed frog tadpoles use a specialized oral disk to attach themselves to cobbles and boulders while feeding on diatoms and periphyton (Altig and Brodie 1972; Bull and Carter 1996). The interstitial spaces between rocks are used as oviposition sites and as hiding cover by tadpoles and adults.

10.4.3 Population Distributions in the Nehalem Watershed

The Project Area is within the reported geographic ranges of the Columbia torrent salamander and the tailed frog (Csuti et al. 1997; Corkran and Thoms 1996). A review of scientific literature, state and federal agency reports, and watershed analyses for the Nehalem River basin revealed just one stream amphibian survey conducted in the Project Area. Researchers from Oregon State University Department of Forest Science collected data on stream amphibians in Buster Creek, a tributary to the Nehalem River, in 2004 as part of amphibian monitoring methods study (Hayes and Stoddard 2004). These researchers found both torrent salamanders and tailed frogs present in Buster Creek. Tailed frogs have also been observed to the south of the Nehalem watershed during fish surveys in the Miami River and tributaries (D. Plawman, ODFW, pers. comm.) and both amphibian species were found to be widespread during a 1998 stream amphibian survey in the Kilchis River watershed (Pacific Wildlife Research, unpublished data). To better understand the distribution of the two focal species, the Columbia torrent salamander and coastal tailed frog for this 2005 Watershed Analysis, an extensive reconnaissance survey was conducted across Oregon state forestlands within the upper Nehalem watershed.

10.4.3.1 Survey and Analytical Methods

Prior to fieldwork, potential survey sites were selected in the watershed using a GIS and spatially-explicit data from ODF (GIS coverages on management basin boundaries, streams, and roads). The selection of particular sites was guided by three principles:

- The number of survey sites allocated to a single ODF management basin was approximately proportional to the land area of the management basin relative to the total land area of all ODF state forestlands in the watershed.
- Approximately 75 percent of the survey sites were to be allocated to streams categorized as "Small" on the ODF streams coverage so as to focus most of the sampling effort in headwater streams where torrent salamanders and tailed frogs tend to be most numerous. The remainder of the sites were allocated to streams categorized as "Medium." Tailed frogs (particularly the larval stage) are known to occur in these mid-order streams and torrent salamanders are sometimes detected in springs and seeps associated with these larger streams.
- Survey sites were located within 200 m of road crossings to minimize walk-in times to the sites, thus maximizing the time available for amphibian searches. All ODF management basins in the watershed are well-roaded and no gaps in coverage were apparent during the GIS survey site selection process.

Based on these selection principles, 100 potential locations were identified and their latitude/longitude coordinates loaded into a GPS for the amphibian surveyor.

Amphibian surveys were conducted from August 16 to August 26, 2005. Searches were conducted by a single surveyor along a 20-m stream transect located at each site. As the surveyor approached each transect, he was observant for adult tailed frogs along the stream margins. The wetted channel was then searched systematically from the downstream end, working upstream. Amphibians were captured in riffles and slides by holding a bait net 200-500 cm downstream of rocks that were overturned by the surveyor, allowing the current to sweep amphibians, fish, and invertebrates into the net. Pools and shallows were searched by visual inspection. Seeps and springs flowing into the main channel were carefully searched for torrent salamanders. Each survey site was searched for a total of 15 minutes. All captured amphibians were released on the transect following the survey. Measurements included stream temperature, active channel width, and a classification of dominant and secondary substrate size classes (silt, sand, gravel, cobble, boulders, or bedrock) on the transect. A digital photograph was also taken of most transects.

A number of survey sites selected prior to fieldwork were inaccessible due to logging or road construction, had no wetted channel when they were visited, or were erroneously selected (no stream channel at the GPS coordinates). Most of these survey sits were replaced by other streams found during the course of fieldwork in the same management basin. However,

extensive road building and logging activities occurring prevented the surveyor from reaching many of the major streams in Fishhawk, Louisignot and Northrup Basins.

Because each transect was searched for amphibians only briefly, it is likely that many torrent salamanders and tailed frogs went undetected on transects having suitable habitat. To better understand which transects have conditions favorable for torrent salamanders and tailed frogs, habitat characteristics summarized from sites where each species was detected were reviewed and formulated into simple habitat mapping rules. These rules were implemented as GIS query statements to identify transects having suitable habitat attributes, and where each species would be most likely to occur, even if they were undetected during this reconnaissance survey. The mapping rule used to identify transects that have suitable habitat for torrent salamander is as follows:

Habitat: Stream Temp <10C° and Dominant Substrate = "Cobble" or "Gravel"

The stream temperature criterion (<10.3C°) was set to include streams within one standard deviation of the mean temperature recorded at transects where torrent salamanders were detected. Observations from the survey, as well as research studies, indicate that the species most often inhabits coarse gravel and cobble substrates.

The mapping rule used to identify transects that have suitable habitat for tailed frogs is as follows:

Habitat: Stream Temp <12.7 and Dominant Substrate = "Cobble"

Similar to the torrent salamander rule, the tailed frog rule is based on the assumption that stream temperature and streambed substrate composition are the most limiting factors to tailed frog populations. Both rules were used to filter out records from the survey GIS database and identify transects that are potentially suitable habitat for the two focal species.

10.4.4 Results

Ninety-one different sites were sampled during the course of the survey. Columbia torrent salamanders were detected at eight sites and coastal tailed frogs were detected at 10 sites (Figure 10-7a,b). Other amphibians observed during the survey included Cope's giant salamander, (*Dicamptodon copei*), Pacific giant salamander (*Dicamptodon tenebrosus*), rough-skinned newt (Taricha granulosa), Pacific treefrog (*Hyla regilla*), and red-legged frog (*Rana aurora*).

Table 10-7 summarizes habitat characteristics at sites where torrent salamanders and tailed frogs were detected, and among all sites where habitat data were collected. These results indicate that Columbia torrent salamanders were most often found in the coldest streams of the watershed. The species was usually detected in small, headwater streams where streambed substrates were dominated by cobble (diameter 2.5-10.0 in.). However, the surveyor noted that torrent salamanders were most often uncovered in small deposits of gravel (diameter 3/4-2.5 in.) imbedded among the cobbles. Using a GIS mapping rule based on habitat measurement and observations made during the survey, a total of 13 transects visited during the survey were determined to have suitable habitat for torrent salamanders. Eight our of 11 ODF management basins in the analysis area had at least one transect having suitable conditions for torrent salamanders (Figure 10-7a,b).

 Table 10-7. A comparison of stream habitat characteristics measured or observed at sites where

 Columbia torrent salamanders and coastal tailed frogs were detected, and among all

 sites visited during the survey

Measurement/ Classification	Torrent Salamander Sites	Tailed Frog Sites	All Survey Sites
Number of sites	8	10	91
Mean (standard deviation) stream temperature, C°	9.1 (1.2)	11.6 (1.1)	11.9 (1.9)
Maximum stream temperature, C°	11.0	13.0	16.7
Mean active channel width, meters	1.3	1.9	2.4
Most frequent dominant substrate class	Cobble	Cobble	Cobble
Most frequent secondary substrate class	Cobble	Cobble	Gravel

Tailed frogs were typically found in larger and warmer streams than torrent salamanders, but were excluded from streams where water temperatures exceeded $13.0C^{\circ}$ (Table 10-7). Adult and larval tailed frogs were only found in streams where substrates were dominated by cobbles. Using the tailed frog habitat mapping rule, a total of 13 transects visited during the survey were determined to have suitable habitat for the species. Eight our of 11 ODF management basins in the analysis area had at least one transect having suitable conditions for tailed frogs (Figure 10-7a,b).

Oregon Department of Forestry

10.5 CONCLUSIONS

The findings of this reconnaissance survey indicate that torrent salamanders and tailed frogs occur in most of ODF management basins within the Nehalem watershed. Habitat data collected at transects occupied by torrent salamanders and tailed frogs supported results of earlier research studies showing that the two species are most frequently found in streams having coarse streambed substrates and cold water temperatures.

÷ .

REFERENCES

Altig, R.G., and E.D. Brodie. 1972. Laboratory behavior of *Ascaphus truei* tadpoles. J. Herpetology 6:21-24.

Baldwin, E.M. 1981. Geology of Oregon. Kendall/Hunt. Dubuque, Iowa.

- Beechie, T.J. and T.H. Sibley. 1997. Relationships between channel characteristics, woody debris and fish habitat in northwestern Washington streams. Trans. Amer. Fish. Soc. 126: 217-229.
- Benda, L. 1990. The influence of debris flows on channels and valley floors in the Oregon coast range, U.S.A. Earth Surface Processes and Landforms 15:457-466.
- Benda, L. and T. Dunne. 1987. Sediment routing by debris flow. Pages 213-223 *in* Erosion and Sediment Transport in Pacific Rim Steeplands. IAHS, Christchurch.
- Benda, L., and T. Dunne. 1997a. Stochastic forcing of sediment supply to channel networks from landsliding and debris flow. Water Resources Research 33:2849-2863.
- Benda, L. and T. Dunne. 1997b. Stochastic forcing of sediment routing and storage in channel networks, Water Resources Research, Vol. 33, No. 12 2865-2880.
- Benda, L., C. Veldhuisen, and J. Black. 2003. Debris flows as agents of morphological heterogeneity at low-order confluences, Olympic Mountains, Washington. Geological Society of America Bulletin 115:1110-1121.
- Benda, L., D. Miller, D. Michaels, and G. Reeves. In preparation. Managing landslide and debris flow risk in the Oregon Coast Range.
- Benda, L., D. Miller, P. Bigelow, and K. Andrus. 2003. Effects of post-wildfire erosion on channel environments, Boise River, Idaho. Journal of Forest Ecology and Management 178:105-119.
- Benda, L.E., and J.C. Sias. 2003. A quantitative framework for evaluating the mass balance of in-stream organic debris. Forest Ecology and Management 172:1-6.
- Benda, L.E., and T.W. Cundy. 1990. Predicting deposition of debris flows in mountain channels. Canadian Geotechnical Journal 27:409-417.
- Benda, L.E., D.J. Miller, T. Dunne, G. Reeves, and J. Agee. 1998. Dynamic Landscape Systems. Pages 261-288 in R.J. Naiman and R.E. Bilby, editors. River Ecology and Management. Springer-Verlag, New York.

- Beschta, R.L. 1984. River Channel Response to Accelerated Mass Soil Erosion. Pages 155-163 *in* Symposium on the Effects of Forest Land Use on Erosion and Slope Stability, Honolulu, Hawaii.
- Biosystems, Water Work Consulting, Coos Watershed Association, Alsea Geospatial, Inc., and Karen Bahus Technical Writing 2003. Elliot State Forest Watershed Analysis. Final Report to Oregon Department of Forestry. Salem, Oregon.
- Bisson, P.B., G.G. Ice, C.J. Perrin, and R.E. Bilby. 1992. Effects of forest fertilization on water quality and aquatic resources in the Douglas-fir region. Pages 179-193 in Chappell, H.N., G.F. Weetman, and R.E. Miller, editors. Forest Fertilization: Sustaining and Improving Nutrition and Growth of Western Forests, Institute of Forest Resource Contrib. 72, University of Washington, Seattle, Washington.
- Blaustein, A.R., J.J. Beatty, D. Olson and R.M. Storm. 1995. The biology of amphibians and reptiles in old-growth forests in the Pacific Northwest. U.S. Forest Service General Technical Report PNW-GTR-337.
- Brattstrom, B. H. 1963. A preliminary review of the thermal requirements of amphibians. Ecology 44:238-255.
- Broad, Tyson and Collins, Charles. 1996. U.S. Geological Survey, Water-Resources
 Investigations Report 96-4080. "Estimated Water Use and General Hydrologic Conditions
 for Oregon, 1985 and 1990. Prepared in cooperation with Oregon Water Resources
 Department and Oregon State Health Division. Portland, Oregon.
- Bull, E.L. and B.E. Carter. 1996. Tailed frogs: distribution, ecology, and association with timber harvest in northeastern Oregon. USDA Forest Service, Pacific Northwest Research Station. Research Paper PNW-RP-497. Portland, Oregon.
- Bureau of Land Management (BLM). 1982. Cadastral survey field notes and plats for Oregon and Washington. U.S. Department of Interior, Bureau of Land Management. Denver, Colorado.
- Busby, P.J., T.C. Wainwright, G.J. Bryant, L.J. Lierheimer, R.S. Waples, F.W. Waknitz, and I.V. Lagomarsino. 1996. Status review of west coast steelhead from Washington, Oregon, and California. National Oceanic and Atmospheric Administration (NOAA). Technical Memorandum NMFS-NWFSC-27, Seattle, Washington.
- Campbell R.F. and E.B. Kvam. 2003. Riparian, Fish and Water Quality Conditions on the Mineral tree Farm. *In* Ten-year review of the West Fork Timber Co, LLC Mineral Tree Farm HCP and Amendment. Paper presented at the HCP Review Meeting Symposium, Sheraton Inn, Tacoma, Washington, December 15, 2003.

- Canale, G. 1999. Oregon Coast Range macroinvertebrate analysis and monitoring status; 1991-1997. Oregon Department of Environmental Quality, Laboratory Division, Biomonitoring Section, Portland, OR.
- Clatskanie Chamber of Commerce. 2005. Clatskanie's History. Article posted on Clatskanie Chamber of Commerce website http://www.clatskanie.com/chamber/history.html Downloaded March 30, 2005.
- Corkran, C.C., and C. Thoms. 1996. Amphibians of Oregon, Washington, and British Columbia. Lone Pine Publishing. Edmonton, Alberta.
- Cross, J. 2003. Measuring the impact of harvest intensity on riparian forest functionality in terms of shade production and large woody debris recruitment potential: two models. MS Thesis, College of Forest Resource, University of Washington, Seattle, Washington. 72 p.
- Cruden, D.M., and D.J. Varnes. 1996. Landslide types and processes: Chapter 3 in Landslides: Investigations and Mitigation, Turner, A.K. and R.L. Schuster, editors. Transportation Research Board, Special Report 247, 36-71.
- Csuti, B., A.J. Kimerling, T.A. O'Neil, M.M. O'Shaughnessy, E.P. Gaines, M.M.P. Huso. 1997. Atlas of Oregon wildlife: distribution, habitat, and natural history. Oregon State University Press. Corvallis, Oregon.
- deVlaming, V.L. and R.B. Bury. 1970. Thermal selection in tadpoles of the tailed-frog, *Ascaphus truei*. Journal of Herpetology. 4:179-189.
- Dietrich, W.E. and T. Dunne. 1978. Sediment budget for a small catchment in mountainous terrain. Zietshrift für Geomorphologie Suppl. Bd. 29:191-206.
- Diller, L.V. and R.L. Wallace. 1996. Distribution and habitat of *Rhyacotriton variegatus* in managed, young growth forests in north coastal California. Journal of Herpetology 30:184-191.
- Drake, D. 1999. Oregon Coast Range REMAP study. Stream habitat index development and site results; 1994 – 1996. Tech. Rept. No. BIO98-06. Oregon Department of Environmental Quality, Laboratory Division, Biomonitoring Section, Portland, OR. March 1999.
- Drew, T.J. and J.W. Flewelling. 1979. Stand density management: an alternative approach and its applications to Douglas-fir plantations. For. Sci. 25:518-532.
- E&S Environmental Chemistry and Young's Bay Watershed Council. 2000. Youngs Bay Watershed Assessment. Report prepared for the Young's Bay Watershed Council. Astoria, Oregon. August 2000.

- Edwards, R.T. 1998. The hyporheic zone. Pages 399-429 *in* R. Naiman and R.E. Bilby, editors. River ecology and management: lessons from the Pacific coastal ecosystem. Springer, New York.
- Elliot, F.A. 1914. State Forestry Board Map. Oregon.
- Everest, F.H. and W. Meehan. 1981. Forest management and anadromous fish habitat productivity. Transactions of the North American Wildlife and Natural Resources Conference 46:521-530.
- Everest, F.H., R. Beschta, J.C. Scrivener, K.V. Koski, J.R. Sedell, and C.J. Cederholm. 1987.
 Fine Sediment and Salmonid Production: A Paradox. Pages 98-142 *in* E.O. Salo and T.W.
 Cundy, editors. Streamside Management: Forestry and Fishery Interactions. College of Forest Resources, University of Washington, Seattle, Washington, USA.
- Fick, L. and G. Martin. 1992. The Tillamook Burn: Rehabilitation and reforestation. Oregon Department of Forestry, Forest Grove Oregon.
- Fisher, S.G., J. Schade, and J. Henry. 2002. Landscape challenges to ecosystem thinking: creative flood and drought in the American Southwest. Scientia Marina 65:181-192.
- Franklin, J.L. and C.T. Dryness. 1988. Natural vegetation of Oregon and Washington. Oregon State University Press. Corvallis, Oregon.
- Fredricksen, R., D. Moore, and L. Norris. 1975. The impact of timber harvest, fertilization and herbicide treatment on stream water quality in western Oregon and Washington. Pages 288-313 in B. Bernier and C. Winget, editors. Forest Soils and Land Management. Laval University Press, Quebec, Canada.
- Fulton, A. 1997. Vernonia, a pocket in the woods. Self-published. Oregon.
- Gessel, S.P., E.C. Steinbrenner, and R.E. Miller. 1979. Response of Northwest forests to elements other than nitrogen. Pages 29-36 *in* S.P. Gesell et al., editors. Forest Fertilization Conference. College of Forest Resources, University of Washington, Seattle, WA.
- Gomez, D.M. and R.G. Anthony. 1996. Amphibian and reptile abundance in riparian and upslope areas of five forest types in western Oregon. Northwest Science 70: 109-118.
- Good, D.A and D.B. Wake. 1992. Geographic variation and speciation in the torrent salamanders of the genus *Rhyacotriton* (Caudata: Rhyacotritonidae). Zoology 126:1-91.
- Good, D.A., G.Z. Wurst, and D.B. Wake. 1987. Patterns of genetic variation in allozymes of the Olympic salamander, Rhyacotriton olympicus (Caudata: Dicamptodontidae). Fieldiana, Zoology, New Series (32): iii+1-15.

- Governors Watershed Enhancement Board. 1999. Oregon watershed assessment of aquatic resources draft manual
- Hayes, J.P. and M. Stoddard. 2004. Estimating site occupancy from repeated presence-absence counts: implications for a potential monitoring strategy for stream amphibians on Oregon State Forest Lands. Final report submitted to Oregon Department of Fish and Wildlife. Dated July 30, 2004.
- Hayes, M.P., T. Quinn, D.J. Dugger, and T.L. Hicks. 2003. Pacific tailed frog (Ascaphus truei) distribution in headwater streams. Presented at the 2003 Annual Meeting of the Geological Society of America, November 2-5, 2003, Seattle, Washington.
- Healey, M.C. 1991. Life history of chinook salmon (*Oncorhynchus tshawytscha*). Pages 313-396 in C. Groot and L. Margolis, editors. Pacific salmon life histories. University of British Columbia Press, Vancouver, Canada.
- Hobbs, S.D., J.P. Hayes, R.L. Johnson, G.H. Reeves, T.H. Spies, J.C. Tappeiner II, and G.E.Wells. 2002. Forest and Stream Management in the Oregon Coast Range. Oregon State University Press, Corvallis, OR.
- Hogan, D.L., S.A. Bird, and S. Rice. 1998. Stream channel morphology and recovery processes.
 Pages 77-96 *in* D.L. Hogan, P.J. Tschaplinski, and S. Chatwin, editors. Carnation Creek and Queen Charlotte Islands Fish/Forestry Workshop: Applying 20 Years of Coast Research to Management Solutions. Land management handbook 41. Crown Publications, Inc., Victoria, B.C.
- Hupp, C.R. and W.R. Osterkamp. 1985. Bottomland vegetation distribution along Passage Creek, Virginia, in relation to fluvial landforms. Ecology 66:670-681.
- Jackson, M. 1983. Stratigraphic Relationships of the Tillamook Volcanics and the Cowlitz Formation in the Upper Nehalem River-Wolf Creek Area, Northwestern Oregon. Master's Thesis, Department of Geology, Portland State University.
- Johnson, J. and J. Maser. 2000. Nehalem River Watershed Assessment. Report prepared by Portland State University for the Upper and Lower Nehalem Watershed Councils under a Governor's Watershed Enhancement Board (GWEB) grant. May 2000. 169 p. + app.
- Johnson, O. W., M.H. Ruckelhaus, W.S. Grant, F.W. Waknitz, A.M. Garrett, G.J. Bryant, K. Neely, and J.J. Hard. 1999. Status review of coastal cutthroat trout from Washington, Oregon, and California. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-37, 292p.
- Kalliola, R. and M. Puharta. 1988. River dynamics and vegetation mosaicism: a case study of the River Kamajohka, northernmost Finland. Journal of Biogeography 15:703-719.

- Kamholz, E.J., J. Blain and G. Kamholz. 2003. The Oregon-American Lumber Company: Ain't no more. Stanford University Press. Stanford, California.
- Kavanagh, P., K. Jones, C. Stein, and P. Jacobsen. 2005. Fish habitat assessment in the Oregon Department of Forestry mid-Nehalem and Clatskanie study area. Report prepared by the Oregon Department of Fish and Wildlife, Aquatic Inventories Project, Corvallis, Oregon. April 3, 2005. 22 p. + Tables, Figures and Maps.
- Kostow, K. 1995. Biennial report on the status of wild fish in Oregon. Oregon Department of Fish and Wildlife. Portland, Oregon.
- Kostow. K. 2002. Oregon lampreys: Natural history status and problem analysis. Oregon Department of Fish and Wildlife. Salem, Oregon. 112 p.
- Long, C.J., C. Whitlock, P.J. Bartlein, and S.H. Millspaugh. 1998. A 9000-Year Fire History from the Oregon Coast Range, Based on a High-Resolution Charcoal Study. Canadian Journal of Forest Resources 28:774-787.
- MacDonald, L.H., A.W. Smart, and R.C. Wissmar. 1991. Monitoring guidelines to evaluate effects of forestry. Activities on streams in the Pacific Northwest and Alaska. EPA 910/9-91-001. 166p.
- Mallory, V.S. 1959. Lower Tertiary biostratigraphy of the California Coast Ranges: Tulsa, OK, American Association of Petroleum Geologists, 416 p.
- May, C.L. 2002. Debris Flows through Different Forest Age Classes in the Central Oregon Coast Range. Journal of the American Water Resources Association 38:1097-1113.
- May, C.L. and R.E. Gresswell. 2003a. Spatial and temporal patterns of debris-flow deposition in the Oregon Coast Range, USA. Geomorphology 1362:1-15.
- McComb, W.C., K. McGarigal, and R.G. Anthony. 1993. Small mammal and amphibian abundance in streamside and upslope habitats of mature Douglas-fir stands, western Oregon. Northwest Science 67:7-15.
- Meade, R.H. 1985. Wavelike movement of bedload sediment, East Fork River, Wyoming. Environ. Geol. Water Sci. 7:215-225.
- Meengs, C.L. and R.T. Lackey. 2005. Estimating the size of historical Oregon salmon runs. Reviews in Fisheries Science 13:51-666.
- Miller, D. and K. Burnett. In Review. An empirical model to characterize debris flow delivery to stream channels.

- Miller, D. and L. Benda. 2000. Effects of mass wasting on channel morphology and sediment transport: South Fork Gate Creek, Oregon. Bulletin of the Geological Society of America:1814-1824.
- Miller, D., K. Burnett, and K. Christiansen. In Review. River Ecosystems in a dynamic landscape: debris flows in the Oregon Coast Range (Ecosystems, spec. ed).
- Miller, D.J. 1995. Coupling GIS with physical models to assess deep-seated landslide hazards. Environmental & Engineering Geoscience 1:263-276.
- Miller, D.J., C.H. Luce, and L.E. Benda. 2003. Time, space, and episodicity of physical disturbance in streams. Forest Ecology and Management 178:121-140.
- Montgomery, D.R. and J.M. Buffington. 1993. Channel classification, prediction of channel response, and assessment of channel condition. Timber Fish and Wildlife Report TFW-SH10-93-002. 84 pp.
- Montgomery, D.R., and W.E. Dietrich. 1994. A physically based model for the topographic control on shallow landsliding. Water Resources Research 30:1153-1171.
- Moore, K., K. Jones, J. Dambacher. 1999. Methods for stream habitat surveys. Oregon Department of Fish and Wildlife. Portland, Oregon.
- Morrison, P.H., and F.J. Swanson. 1990. Fire History and Pattern in a Cascade Range Landscape. General Technical Report PNW-GTR-254, USDA Forest Service, Portland, Oregon.
- Mosley, M.P. 1978. Bed material transport in the Tamaki River near Dannevirke, North Island, New Zealand. N.Z. J. of Science 21:619-626.
- Naiman, R.J., T. Beechie, L.E. Benda, D.R. Berg, P.A. Bisson, L.H. MacDonald, M.D. O'Connor, P.L. Olsen, and E.A. Steele. 1992. Fundamental elements of ecologically healthy watersheds in the Pacific Northwest Coastal Ecoregion. Pages 127-188 in R.J. Naiman, editor. Watershed management: balancing sustainability and environmental change. Springer-Verlag, New York.
- Nakamura, F. 1986. Chronological study on the torrential channel bed by the age distribution of deposits. Research Bulletin Coll. Exp. For. Hokkaido University 43:1-26.
- National Marine Fisheries Service (NMFS). 1996. Position paper on the Oregon Forest Practices Act. May 13, 1996. http://www.umpqua-watersheds.org/local/nmfs_on_ofpa.html#3.

- Nickelson, T., J.D. Rodgers, S.L. Johnson, and M. Solazzi. 1992. Seasonal changes in habitat use by juvenile coho salmon (*Oncorhynchus kisutch*) in Oregon coastal streams. Canadian Journal of Fisheries and Aquatic Sciences 49: 783-789.
- Niem, A.R., and W.A. Niem. 1985. Geologic map of the Astoria Basin, Clatsop and northernmost Tillamook Counties, northwest Oregon: Oregon Department of Geology and Mineral Industries Oil and Gas Investigations 14, scale 1:100,000.
- Niem, W.A. and A.R. Niem. 1992. Ages of rocks in southwestern Washington and northwestern Oregon as indicated by paleontological and isotopic dates: U.S. Geological Survey Open-File Report 92-344, 115 p. + 2 plates.
- Ohmann, J.L., and M.J. Gregory. 2002. Predictive mapping of forest composition and structure with direct gradient analysis and nearest neighbor imputation in coastal Oregon, USA. Canadian Journal of Forest Resources 32:725-741.
- Oregon Climate Service (OCS). 2005. Data downloaded from Oregon Climate Service website Service http://www.ocs.oregonstate.edu/ March 11, 2005.
- Oregon Department of Forestry (ODF). 2001. Northwest Oregon State Forests Management Plan. Oregon Department of Forestry, Salem, Oregon. January 2001
- Oregon Department of Forestry (ODF). 2003. Implementation plans for Northwest and Southwest Oregon State Forests Management Plan. Oregon Department of Forestry, Salem Oregon. March 2003.
- Oregon Department of Forestry. 1993. Elliot State Forest Watershed Analysis. Report prepared for Oregon Department of Forestry by Biosystems, Water Work Consulting, Coos Watershed Association, Alsea Geospatial Inc. and Karen Bahus Technical Writing. Oregon Department of Forestry.
- Oregon Natural Heritage Information Center (ORNIC). 2004. Rare, Threatened and Endangered Species of Oregon. Oregon Natural Heritage Information Center, Oregon State University, Portland, Oregon. 105 pp.
- OWEB Manual. 1999. (See: Watershed Professionals Network 1999).
- Pater, D.E., S.A. Bryce, T.D. Thorson, J. Kagan, C. Chappel, J. Omernik, S,H, Azevedo and A.J. Woods. 1998. Ecoregions of western Washington and Oregon. Map. U.S. Environmental Protection Agency. Corvallis, Oregon.
- Paustain, S.J., K. Anderson, D. Blanchet, S. Brady, M. Cropley, J. Edgington, J. Fryxell,
 G. Johnejack, D. Kelliher, M. Kuehn, S. Maki, R. Olson, J. Seesz and M. Wolanek. 1992.
 A channel type users guide for the Tongass National Forest, Southeast Alaska. U.S. Forest
 Service, Alaska Region R10-TP-26. 179 pp.

- Piegay, H., T.A. and A. Citterio. 1999. Input, storage and distribution of large woody debris along a mountain river continuum, the Drome River, France. Catena 35:19-39.
- Pike, R.G. and R. Scherer. 2003. "Overview of the potential effects of forest management on low flows in snowmelt-dominated hydrologic regimes" BC journal of Ecosystems and Management. Vol 3. No 1.
- Ray, C. 1958. Vital limits and rates of desiccation in salamanders. Ecology 39:75-83.
- Reeves, G.H., P.A. Bisson, and J.M. Dambacher. 1998. Fish Communities. Pages 200-234 in R.J. Naiman and R.E. Bilby, editors. River ecology and management: lessons from the Pacific coastal ecosystem. Springer, New York.
- Roberts, R.G. and M. Church. 1986. The sediment budget in severely disturbed watersheds, Queen Charlotte Ranges, British Columbia. Canadian Journal of Forest Research 16:1092-1106.
- Robison, G.E., K.A. Mills, J. Paul, L. Dent, and A. Skaugset. 1999. Storm Impacts and Landslides of 1996: Final Report. Forest Practices Technical Report 4, Oregon Department of Forestry, Salem, OR.
- Roghair, C.N., C.A. Dolloff, and M.K. Underwood. 2002. Response of a Brook Trout Population and Instream Habitat to a Catastrophic Flood and Debris Flow. Transactions of the American Fisheries Society 131:718-730.

Rosgen. D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.

- Rule, G. 2001. Watershed Assessment of the Lower Columbia-Clatskanie Subbasin of Oregon. Master's Thesis of Environmental Management degree at Portland State University. Portland, Oregon.
- Salminen, E.M., and R.L. Beschta. 1991. Phosphorus and forest streams: the effects of environmental conditions and management activities. Oregon State University, Department of Forest Engineering. Corvallis, OR. 185p.
- Scrivener, J.C. and M.J. Brownlee. 1989. Effects of Forest Harvesting on Spawning Gravel and Incubation Survival of Chum (*Oncorhynchus keta*) and Coho Salmon (*O. kisutch*) in Carnation Creek, British Columbia (Bigelow). Canadian Journal of Fisheries and Aquatic Sciences 46:681-696.
- Sedell, J.R and C. N. Dahm. 1984. Catastrophic disturbances to stream ecosystems: volcanism and clear-cut logging. Pages 531-539 in M.J. Klug and C.A. Reddy, editors. Current perspectives in microbial ecology. Michigan State University, East Lansing and American Society of Microbiology, Washington, D.C.

- Sidle, R.C. 1987. A dynamic model of slope stability in zero-order basins. IAHS Publ. 165:101-110.
- Sidle, R.C. 1992. A theoretical model of the effects of timber harvesting on slope stability. Water Resources Research 28:1897-1910.
- Smith, D. 1998. Riparian Stand Survey. TFW Effectiveness Monitoring and Evaluation Program. Northwest Indian Fish Commission. September 1998. 11 p. + app.
- Snavely, P.D., Jr., and H.F. Vokes. 1949. Geology of coastal area between Cape Kiwanda and Cape Foulweather, Oregon: U.S. Geological Survey Oil and Gas Investigational Preliminary Map 97, scale 1:62,500.
- Snavely, P.D., Jr., N.S. MacLeod, and D.L. Minasian. 1990. Preliminary map of the Nestucca Bay Quadrangle, Tillamook County, Oregon: U.S. Geological Survey Open-File Report 90-202, scale 1:24,000.
- Stottlemeyer, R. 1987. Natural and anthropic factors as determinants of long-term streamwater chemistry. Pages 86-94 in C.A. Troendle, M.R. Kaufmann, R.H. Hamre, and R.P. Winokur (tech. coord.). Proceedings of a Technical Conference: Management of Subalpine Forests: Building on 50 Years of Research, Silver Creek, CO. July 6-9, 1987. USDS Forest Service, General Tech. Report RM-149. 253 p.
- Sugden, B., and Others. 1998. Technical Appendix to the Native Fish HCP. Report prepared by Plum Creek Timber Company, Montana; presented to the Federal Services (US Department of Interior, US Fish and Wildlife Service and US Department of Commerce, NOAA Fisheries) in support of an Incidental Take Permit under ESA Section 10. 1998.
- Sullivan, K., J. Tooley, K. Doughty, J.E. Caldwell and P. Knudsen. 1990. Evaluation of prediction models and characterization of stream temperature regimes in Washington. Timber/Fish/Wildlife Rep. No. TFW-WQ3-90-006. Washington Department of Natural Resources, Olympia, Washington.
- Swales, S., and C.D. Levings. 1989. Role of off-channel ponds in the life cycle of juvenile coho salmon (*Oncorhynchus kisutch*) and other juvenile salmonids in the Coldwater River, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 46:222-242.
- Swanson, F.J. 1981. Fire and geomorphic processes. General Technical Report WO-26:401-420.
- Swanson, F.J., and G.W. Lienkaemper. 1978. Physical consequences of large organic debris in pacific northwest streams. General Technical Report PNW-69, USDA Forest Service, Portland, Oregon.

- Swanston, D.N. 1974. Slope stability problems associated with timber harvesting in mountainous regions of the western United States. USDA Forest Service General Technical Report U.S. Department of Agriculture, Portland, Oregon.
- Taylor, G. 1995. The Big Storm—December 12, 1995. Article posted on website of Oregon Climate Service http://www.ocs.oregonstate.edu/index.html. Downloaded March 11, 2005.
- Taylor, G.H. and R.R. Hatton. 1999. The Oregon weather book: a state of extremes. Oregon State University Press, Corvallis, Oregon.
- Teensma, P.D.A. 1987. Fire history and fire regimes of the central western Cascades of Oregon. Ph.D. University of Oregon, Eugene, Oregon.
- UNWC. (unpublished data). GIS data layer transmittal of the Upper Nehalem Watershed Council concerning riparian characterization from 1995 aerial photographs.
- U.S. Fish and Wildlife Service (USFWS). 2004. Species of Concern in Oregon. Report dated April 21, 2004. Oregon Fish and Wildlife Office. Portland, Oregon. Accessed on the WWW February 2, 2005 at <u>http://oregonfwo.fws.gov/EndSpp/Documents/SOC.pdf</u>
- Umpqua Resource Area, Coos Bay District, and Bureau of Land Management. 2001. South Fork Coos Watershed Analysis. March 31, 2001.
- United Sates Census Bureau. 2005. Fact sheets for Tillamook, Clatsop and Columbia Counties. Information downloaded from U.S. Census web site <u>http://factfinder.census.gov</u> April 26, 2005.
- U.S. Environmental Protection Agency. 1986. Water quality criteria for 1986. U.S. Environmental Protection Agency, Washington D.C.
- United States Forest Service (USFS). 2002. Landscape Dynamics and Forest Management: Educational CD-ROM. General Technical Report, RMRS-GTR-101CD, USDA, Rocky Mountain Research Station/Earth Systems Institute.
- Vannote, R.L, G.W. Minshall, K.W. Cummins, J.R. Sedell, and C.E. Cushing. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37:130-137.
- Wahbe, T.R. and F.L. Bunnell. 2003. Relations among larval tailed frogs, forest harvesting, stream microhabitat, and site parameters in southwestern British Columbia. Canadian Journal of Forest Research 33(7): 1256-1266.
- Warren, W.C., H. Norbisrath, and R.M. Grivetti. 1945. Geology of northwestern Oregon west of Willamette River and north of latitude 45°15': U.S. Geological Survey Oil and Gas Investigations Preliminary Map OM-42, scale 1:145,728.

- Washington Department of Fish and Wildlife (WDFW). 2000. Fish passage barrier and surface water diversion screening assessment and prioritization manual. Washington Department of Fish and Wildlife Habitat Program-Environmental Restoration Division. Olympia, Washington. August 2000.
- Washington Forest Practices Board (WFPB). 1997. Standard methodology for conducting watershed analysis, Version 4.0. Washington Forest Practices Board Manual, prepared by the Washington Department of Natural Resources. Olympia, Washington. November 1997.
- Watershed Professionals Network. 1999. Oregon Watershed Assessment Manual. Developed for the Governor's Watershed Enhancement Board. Salem, Oregon.
- Weitkamp, L.A., T.C. Wainwright, G.J. Bryant, G.B. Milner, D.J. Teel R.G. Kope and R.S. Waples. 1995. NOAA-NWFSC Tech Memo-24: Status review of coho salmon from Washington, Oregon, and California. National Marine Fisheries Service, US Department of Commerce. Seattle, Washington.
- Wells, R.E., P.D. Snavely, Jr., N.S. Macleod, M.M. Kelly, M.J. Parker, Fenton, Johanna, and Felger, Tracey. 1995. Geologic map of the Tillamook Highlands, Northwest Oregon Coast Range-a digital database: U.S. Geological Survey Open-File Report 95-670.
- Welsh, H.H. and A.J. Lind. 1996. Habitat correlates of the southern torrent salamander, *Rhyacotriton variegatus* (Caudata: Rhyacotritonidae), in northwestern California. Journal of Herpetology. 30:385-398.
- Wimberly, M.C., T.A. Spies, C.J. Long, and C. Whitlock. 2000. Simulating historical variability in the amount of old forests in the Oregon Coast Range. Conservation Biology 14:167-180.
- Wolf, D.W. 1992. A literature review: Land use and nonpoint phosphorus pollution in the Tualatin Basin, OR. Oregon State University Extension Service and Oregon Water Resources Research Institute. Corvallis, OR. Special Report No. 898. 63p.
- Young, L.L. and J.L. Colbert. 1965. Waterpower Resources in Nehalem River Basin Oregon. U.S. Geological Survey Water-supply Paper 1610-C.
- Ziemer, R.R. 1981. Roots and the stability of forested slopes. I.A.H.S. Publ. 132:343-357

